Суперсила - [7]
Рис.1. Расширяющаяся Вселенная похожа на раздувающийся шар. Точки, изображающие галактики, разбросаны по поверхности шара более или менее равномерно. Когда шар раздувается, расстояния между “галактиками” увеличиваются. Наблюдателю, находящемуся в любой из точек кажется, будто соседние точки удаляются, хотя в действительности они не движутся по поверхности: совокупность “галактик” вовсе не разбегается относительно какой-либо точки на поверхности. Разумеется, двумерная поверхность шара – не более, чем аналог трехмерного пространства. В реальной Вселенной не существует области, соответствующей областям внутри или снаружи оболочки шара.
Расширяющаяся Вселенная весьма напоминает трехмерный аналог раздувающегося воздушного шара, и неправильно представлять себе галактики мчащимися через пространство в разные стороны от общего центра расширения. В действительности пространство между галактиками, разрастаясь (вытягиваясь), раздвигает галактики относительно друг друга. Способность пространства вытягиваться следует из общей теории относительности Эйнштейна, которую мы постараемся объяснить в последующих главах. Тот факт, что мы видим, как далекие галактики разбегаются от нас, вовсе не означает, что мы находимся в центре расширяющейся Вселенной; с тем же успехом любую точку на поверхности раздувающегося воздушного шара можно принять за ее центр. (У самой поверхности шара нет центра.) Следовательно, Вселенная не расширяется куда-то, а просто вся увеличивается в размере.
Но если Вселенная раздувается, то в прошлом она должна была находиться в сжатом состоянии, и, экстраполируя назад во времени, мы приходим к заключению, что около 15 млрд. лет назад космическая материя должна была иметь необычайно высокую плотность. В этом суть теории Большого взрыва, согласно которой ныне наблюдаемая Вселенная возникла в результате гигантского взрыва.
По современной версии этой теории для ранних стадий Большого взрыва характерны необычайно высокие температура и плотность; при таких условиях ни один из современных элементов строения Вселенной, включая атомы, не мог существовать. Важное подтверждение такого сценария было получено в 1965 г., когда два специалиста по дальней связи из фирмы “Белл телефон лабораторис” обнаружили таинственное излучение, идущее из космического пространства. Физики и астрономы быстро идентифицировали это космическое фоновое излучение как реликтовое тепловое излучение Большого взрыва, своего рода отблески тон огненной вспышки, которая 15 млрд. лет назад ознаменовала рождение нашего мира.
Процесс Большого взрыва часто неверно трактуется наподобие взрыва глыбы вещества в уже существовавшем вакууме. Но, как известно, пространства вне Вселенной не существует. Большой взрыв следует рассматривать как событие, в результате которого возникло и само пространство. Таким образом, научная картина “сотворения мира” оказывается глубже библейской, ибо она отражает рождение не только материи, но и пространства. Последнее возникает не каким-то иным путем, а непосредственно в результате Большого взрыва. Следовательно, Большой взрыв не есть событие, которое произошло во Вселенной; это было само рождение Вселенной, целиком и буквально из ничего.
Другая важная особенность Большого взрыва связана с временем. Многие космологи считают, что время до Большого взрыва не существовало, т.е. не было никакого “прежде”. Один из уроков новой физики состоит в том, что пространство и время существуют не сами по себе, а составляют неотъемлемую часть физического мира. Следовательно, если Большой взрыв ознаменовал рождение физического мира, то пространство и время возникли только в момент Большого взрыва. Идея отождествления момента рождения Вселенной с началом времени далеко не нова. Еще в IV в. Святой Августин писал: “Мир сотворен с временем, но не во времени”.
Внезапное возникновение Вселенной в результате Большого взрыва означает, что вопрос “Где мы находимся—во времени"? имеет смысл. Исчисления всех космических эпох можно вести от этого уникального всеопределяющего события, которое произошло около 15 млрд. лет назад. Историю Вселенной можно разделить на зоны, ведя отсчет от этого абсолютного нуля времени.
Из чего мы состоим?
На этот вопрос ответить просто: из материи. Но что такое материя и как она возникла? Диапазон форм, красок, плотностей и текстуры материальных тел столь широк, что попытка понять природу материи может показаться безнадежной задачей. Однако еще две с половиной тысячи лет назад греческие философы заложили основы нашего понимания природы материи, когда попытались свести разнообразие окружающего мира к взаимодействию небольшого числа первичных составных частей – элементов. В VI в. до н. э. Фалес считал первоосновой всех вещей один первичный элемент"– воду, но позднее мыслители ввели в рассмотрение четыре земных элемента: землю, воздух, огонь и воду. По мысли древних, эти элементы в целом сохраняются – их общее количество остается неизменным, – но могут образовывать друг с другом различные комбинации, необычайно разнообразные по форме и составу. Небесным телам отводилась пятая субстанция, называемая эфиром, или квинтэссенцией. Греческие философы сделали важный шаг, отвергнув ссылки на потусторонние силы и наблюдение – основу научного метода. Анаксагор (500—428 г.г. до н.э.) существенно усовершенствовал более ранние теории, введя представление о бесконечной Вселенной, заполненной бесконечным множеством частиц, или “атомов”. Кроме того, Анаксагор высказал предположение, что небесные тела состоят из таких же веществ, что и Земля, – эта “ересь” едва не стоила ему жизни. Левкипп внес свою лепту в развитие атомной теории материи, это дело продолжил его ученик Демокрит. Впоследствии атомистическая теория была отвергнута такими великими философами, как Аристотель, Платон и Сократ. Однако позднее идеи атомистов были подхвачены Эпикуром,) (341—270 гг. до н.э.).
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.