Суперобъекты. Звезды размером с город - [7]
В физике, как правило, когда параметры достигают экстремальных значений, появляется что-то новое и примечательное. При существенном уплотнении вещество ведет себя не так, как при обычных значениях плотностей. Очень сильные магнитные поля меняют свойства вещества не так, как обычные магнитные поля. Количество переходит в качество. Так вот, представим, что мы сжимаем и сжимаем объект, и становится все интереснее и интереснее. Мы можем наблюдать крайне любопытные физические процессы, не встречающиеся в других условиях. Но если сжать его слишком сильно – получится черная дыра. То есть все исчезнет в этой черной дыре. Это уже не так увлекательно, потому что у черной дыры всего один основной параметр – масса. Кроме этого, черная дыра может вращаться, и это важно для описания пространства-времени в непосредственной близости от нее. Правда, эффект значителен лишь при экстремальном вращении, которое в природе у черных дыр достигается нечасто. Наконец, у дыры может существовать электрический заряд, но в реальности черные дыры почти всегда не заряжены, или заряд очень маленький, так как на заряженный объект быстро натекают заряды противоположного знака. Так что «пережав» и создав черную дыру, мы теряем часть интересной физики[7].
Во всем нужна мера. Если остановиться вовремя, то из ядра звезды размером десятки тысяч километров получится шарик радиусом километров десять – двенадцать. Это размер крупного города. Там есть сверхплотное вещество, которого нет в земных лабораториях, сверхсильные магнитные поля, которые нельзя создать в лабораторных установках. У вас очень сильная гравитация на поверхности. Все с приставками «сверх-» и «супер-». И вы можете наблюдать это экзотическое физическое многообразие! То есть вы можете непосредственно изучать сверхплотное вещество, которое находится в сверхсильном гравитационном, магнитном, электрическом поле. И это суперинтересно!
Внутреннее строение нейтронной звезды. Выделяют две основные части: ядро и кору. Каждую из них, в свою очередь, также делят надвое. Во внутренней коре появляются свободные нейтроны в сверхтекучем состоянии. А поведение вещества во внутреннем ядре вообще остается загадкой.
Предсказание и открытие нейтронных звезд
Внутри у наших суперобъектов все тоже страшно интересно. Кроме сверхплотного вещества, там может быть сверхтекучесть протонов, нейтронов, разные экзотические состояния, новые элементарные частицы. Это чрезвычайно любопытные для исследователя объекты.
Нейтронные звезды (что нечасто бывает в астрономии) вначале предсказали. Произошло это еще в 30-е годы ХХ века. Началось все с работы Льва Ландау, написанной даже до открытия нейтронов. В статье было высказано предположение о существовании сверхплотных звездных конфигураций с плотностью порядка ядерной. Но ничего не говорилось о возможном происхождении таких звезд, о том, где и как их искать. Настоящее откровение случилось в 1934 году, когда Вальтер Бааде и Фриц Цвикки опубликовали коротенькую заметку, в которой сумели правильно предвидеть, что нейтронные звезды рождаются в результате вспышек сверхновых (а потому их можно обнаружить в остатках этих взрывов).
Однако несмотря на то, что это весьма интригующее предсказание, никто не бросился искать нейтронные звезды. Дело в том, что найти десятикилометровый шарик где-то, бог знает где (в далеком остатке сверхновой), очень трудно. В итоге обнаружили их случайно только в 1967 году (Бааде не дожил до этого момента, а Цвикки – да). Никто не смог догадаться, что, если у компактных объектов есть сверхсильные магнитные поля (которые предсказывались за несколько лет до открытия пульсаров в работах Виталия Гинзбурга и Леонида Озерного) и они быстро крутятся, то в результате должны формироваться строго периодические радиоимпульсы (это неудивительно, специалисты до сих пор спорят о природе механизма генерации радиоизлучения пульсаров). А именно такие радиоимпульсы и были открыты.
Сама по себе история открытия радиопульсаров весьма драматична. Она в деталях рассказана во множестве книг и статей. Напомним, что поскольку пульсарный сигнал выглядит искусственным – слишком уж точным и коротким был период, как будто работает радиомаяк или еще какое-то устройство, – то первая мысль была о том, что астрономы уловили послание внеземного разума. Первый источник даже назвали LGM-1, т. е. Little Green Men –1. Уже тогда инопланетян называли маленькими зелеными человечками. Источник впоследствии получил «нормальное» имя – PSR B1919+21, но его первое обозначение явственно свидетельствует о неординарности открытия.
Типичные сигналы радиопульсара. Импульсы приходят строго периодически, что связано с вращением нейтронной звезды. У обычных радиопульсаров интервал между пиками составляет примерно от 10 миллисекунд до 10 секунд.
В 1960-е годы внеземной разум был очень модной темой. Наверное, это было связано с тем, что человек как раз вышел в космос и казалось, что мы вот-вот полетим к звездам. Тогда были потрачены довольно большие ресурсы на поиски искусственных внеземных сигналов. Активно проводились и наблюдения, и обсуждения. Собирались крупные международные симпозиумы с участием ведущих ученых. Кстати, современный скептицизм ученых относительно всяких зеленых человечков оправдан тем, что ученые лет 10–15 очень серьезно исследовали эту проблему, но не нашли ничего хотя бы немного обнадеживающего. Показательно, что в начале программы по изучению внеземного разума назывались CETI–Communication with ExtraTerrestrial Intelligence. Но потом быстро поняли, что ни о каком контакте в ближайшее время речь не пойдет, и возник термин SETI – Search for ExtraTerrestrial Intelligence, сохранившийся до сих пор.
Современная астрофизика – это быстро развивающаяся наука, которая использует новейшие (и очень дорогие) приборы и суперкомпьютеры. Это приводит к огромному потоку результатов: экзопланеты и темная энергия, гравитационные волны и первые снимки Плутона с близкого расстояния. В результате астрономическая картина мира постоянно меняется. Однако многие фундаментальные особенности этой картины уже сформировались. Мы знаем, что живем в расширяющейся Вселенной, чей возраст составляет немногим менее 14 млрд лет. Нам известно, как формировались и формируются ядра элементов.
Галилео Галилею принадлежат слова: «Книга природы написана на языке математики». Спустя почти четыре столетия мы не устаем удивляться тому, что математические методы прекрасно подходят для описания нашего мира. Еще большее изумление вызывают естественнонаучные открытия, сделанные на основе математического анализа уравнений. Создание любой сложной конструкции – от хитроумной дорожной развязки до квантового компьютера – сопряжено с математическими расчетами. Для полноценного понимания действия гравитации или квантовых явлений нам также не обойтись без математики.
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.
Из всего, что нас окружает, самой необъяснимой кажется жизнь. Мы привыкли, что она всегда вокруг нас и в нас самих, и потеряли способность удивляться. Но пойдите в лес, взгляните так, будто вы их увидели впервые, на деревья, траву, цветы, на птиц и муравьев, и вас охватит чувство беспомощности перед лицом великой тайны жизни. Неужели во всем этом есть нечто общее, нечто такое, что объединяет все живые существа, будь то человек или невидимый глазом микроб? Что определяет преемственность жизни, ее возрождение вновь и вновь из поколения в поколение? Эти вопросы стары как мир, но только во второй половине XX века удалось впервые получить на них ответы, которые, в сущности, оказались не слишком сложными и, главное, ослепительно красивыми.
Французская революция XVIII века уникальна тем, что ее опыт востребован и актуален вот уже более двух столетий. Она – точка отсчета и матрица для всех последующих революций, участники которых равнялись на нее, подражая ей или пытаясь ее превзойти. Неудивительно, что и в наши дни историки и социологи видят в ней идеальную модель для изучения динамики революций в целом и выявления их общих закономерностей, обращаются к ее опыту вновь и вновь, пытаясь понять, как происходят и как развиваются революции. Жившие два с лишним века тому назад люди в напудренных париках и камзолах были не так далеки от нас, как это может показаться на первый взгляд…
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Кажется, что мы очень мало знаем о жизни наших предков – первых людей. У нас нет никаких письменных свидетельств их истории, и об их быте, верованиях и образе жизни можно только догадываться по редким находкам, захоронениям и стоянкам. Достаточно ли этого? Оказывается, да. Камни и черепа могут очень много рассказать о прошлом: о том, как жили семьи, как дети становились взрослыми, как люди приманивали охотничью удачу, как открывали новые земли, как приручали первых животных и даже как лечили зубы.