Строение и законы Вселенной - [18]
Энергия Вселенной
Энергия для поддержания полевых структур может обеспечиваться из следующих источников:
1. Полевая структура является своего рода проводящей средой для волновой функции, а ее размеры (стремящиеся к бесконечности в нашем масштабе размеров) приводят к появлению либо стоячих волн с чрезвычайно малой амплитудой (по координатам и времени 10>-30 ÷ 10>-40 м/с), либо перманентно пробегающих волн (типа ряби на поверхности раздела сред вода— воздух), происходящих при минимальных потерях энергии.
2. В современной науке существует гипотеза, что вакуум время от времени порождает пары материальных частиц (обычно частица — античастица) в нашей Вселен-ной. Это явление, по представлениям космологов, обусловливает расширение Вселенной и (в соответствии со вторым законом термодинамики) обеспечивает энергетический баланс.
3. Границы между ограничивающими нашу систему множествами проницаемы для некоторых частиц и обеспечивают обмен энергией в этих структурах (например, фотон, не имеющий массы покоя).
Одним из подобных предположений является представление о проникновении в нашу Вселенную частиц, движущихся в обратном (относительно нашего) потоке времени и каким-то образом влияющих на энергетический баланс. Такие частицы современными средствами наблюдения зафиксировать принципиально затруднительно.
* * *
Наиболее непротиворечивым можно назвать сочетание условий сверхпроводимости (в широком смысле слова не только для электричества, хотя в основе любого взаимодействия обычно обнаруживаются электромагнитные составляющие) и явлений в резонансных точках поля (где волновые системы складываются или взаимно компенсируются).
Пример 1. При передаче переменного тока по проводам потери энергии (электричества) значительно уменьшаются, если расположить приемник и передатчик в узлах волновой линии.
Пример 2. Если катки ленточного транспортера располагаются на расстоянии длины волны собственных колебаний транспортной ленты с грузом и по транспортеру идет бегущая волна возмущения, то сопротивление трения на опорах уменьшается, а скорость движения возрастает в десятки раз, что подтверждено экспериментально.
Примечание. Правильный и непредвзятый подход к описываемым принципам сбережения энергии вполне может быть использован в вопросах стратегического планирования и энергетической безопасности отдельно взятой страны.
В теоретических разработках последних лет не отрицаются возможности явления сверхпроводимости в сложных неорганических и органических веществах при достаточно высоких (100 К и выше) температурах, тем более в космическом пространстве, где основной фон температуры невысок, а нагретые тела (звезды и т. д.) занимают незначительный объем. В Космосе явление сверхпроводимости играет в формировании стационарных и переменных полей более существенную роль, чем известно из исследований в настоящее время.
Базируясь на вышеизложенных общих представлениях (которые основаны л ибо на теоретических предпосылках, либо на интерпретации результатов приборных наблюдений), нельзя дать абсолютно достоверных ответов по фундаментальным вопросам. Этому препятствуют инструментальные ошибки, схожесть явлений по нехарактерным признакам, противоречивые теории и др. Критерием правильности выводов могут служить только явления, аналогичные наблюдаемым, которые доступны практическому научному изучению в земных условиях и в той части космического пространства, которая может быть исследована с помощью современных космических средств.
Отсюда следует, что необходим самый тщательный анализ видов эволюции на нашей планете — от зарождения Земли через геологическую, биологическую и социальную эволюции к перспективе информационной эволюции. При этом прослеживается достаточно устойчивая закономерность самого закона эволюции, что позволяет рассматривать полевую структуру и аналоговые методы сравнения в качестве наиболее универсальных в наблюдаемой нами области Вселенной.
К вопросу о «тепловой смерти» Вселенной
Вопрос о преобразовании энергии во времени и пространстве Вселенной связан с нашим пониманием симметрии и вектора времени.
Согласно наиболее распространенному и физически понятному мнению, энергия определяется как способность какой-либо физической структуры воздействовать с фиксируемым результатом на другую физическую структуру, в частности, на перемещение заряда или материального тела при воздействии на него соответствующего поля. Наиболее простой пример — классические определения потенциальной и кинетических энергий в теории твердого тела.
В нашем представлении «работа» является количественной характеристикой энергии и чаще всего определяется изменением координат взаимодействующих структур в пространстве и времени.
При этом между работой и энергией (субъектов, участвующих во взаимодействии) существует принципиальная разница: работа всегда определяется конкретным промежутком времени; независимо от критерия полезности работа — величина положительная, то есть совпадающая по направлению с вектором времени. Энергия же может накапливаться и (или) уменьшаться в определенной структуре или находиться как бы в «замороженном» состоянии, то есть не изменяться при отсутствии внешних возмущающих факторов. Знак изменения энергии не связан с положительным или отрицательным течением времени либо с его отсутствием вообще. Существующие в настоящее время объяснения данных явлений не полностью снимают указанное противоречие. Это косвенно проявляется, например, в вопросе о соотношении вещества и антивещества в известной нам части Вселенной. Математически данные частицы равноправны, в принципе, в момент так называемого Большого взрыва вероятность их появления была одинаковой. Но чрезвычайная редкость античастиц пока не нашла достаточно веского объяснения.
Их служба и опасна, и трудна, и на первый взгляд как будто не видна. На второй – она подавно не видна... Служба, блин, такая...Питерские менты продолжают запойно работать, и в этом им помогает Дмитрий Черкасов, в то время как Рогов, Петренко и Плахов занимаются неизвестно чем, непонятно где...
Пацанам России — конкретно красе и чисто гордости нации — посвящается эта книга. События и персонажи в большинстве своем вымышлены. Хотя и не всегда...
Немного дикие, но тем не менее более симпатичные, чем раньше, правильные пацаны Ортопед, Глюк, Горыныч, Садист, Кабаныч, Стоматолог, Гугуцэ и остальные члены бодрого коллектива, а также их большой друг Денис Рыбаков снова в бою.Покой им только снится.Как, впрочем, и окружающим их официальным и неофициальным лицам...
Книга, которую вы держите в руках, – это долгожданная встреча с популярными героями романов известного писателя Дмитрия Черкасова «Шансон для братвы» и «Канкан для братвы». Невероятные в умопомрачительно смешные истории из жизни реальных братков России продолжаются...
Новый остросюжетный триллер Дмитрия Черкасова приоткрывает завесу тайны над кровавыми интригами и заговорами чиновников Высшего аппарата власти. Секретные лаборатории, занимающиеся экспериментами над живыми людьми; этническое, психотронное и биологическое оружие; убийства, шантаж и погони; любовь молодого офицера госбезопасности и женщины-врача, оказавшихся втянутыми в преступные игры, но не желающих становиться пешками в руках политиков, — все это не сможет оставить вас равнодушными. Любые совпадения имен, фамилий и должностей персонажей с реальными людьми являются абсолютно случайными и совершенно непреднамеренными, чего нельзя сказать о некоторых происходящих в книге событиях.
В отчаянной попытке заполучить мощное биологическое оружие сошлись спецслужбы России и Запада. Ампула со смертоносным вирусом с эсминца «Хюгенау», потопленного во время войны в водах Ладоги, теперь находится в Париже. Но десант подводного спецназа уже готов к высадке! И теперь Посейдон, он же капитан подводного спецназа Каретников, и его «Сирены» примут бой в мутных водах Сены...
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.