Стол находок утерянных чисел - [6]
Первым её решил Главный терятель, хотя и неверно. Он рассуждал так: какое самое большое натуральное число можно составить из десяти цифр? Ясно, что десятизначное. А наибольшее десятизначное число равно десяти миллиардам без единицы: 9 999 999 999. Это-то и есть число всех натуральных чисел до десятизначных включительно.
К сожалению, Главный терятель не понял задачи. Ведь речь в ней вовсе не обо всех натуральных числах до десятизначных включительно, а лишь о тех, которые можно составить из десяти фишек! Не говорю уже о том, что среди этих десяти фишек всего одна девятка, а в его числе — десять…
— Вот что значит — начать не с того бока, — укоризненно вздохнул я.
— А мы начнём с того, — сказала девочка. — Как вы думаете, сколько однозначных натуральных чисел можно получить из десяти фишек?
— Смешно! — пожал плечами Главный терятель, который успел уже перенять любимое девочкино словечко. — Где десять однозначных фишек, там и десять однозначных чисел.
И тут под столом громко затявкал Пуся.
— Что это с ним? — забеспокоился Главный терятель. — По-моему, он кашляет.
— А по-моему, смеётся, — возразил я. — Наверное, заметил, что вы опять ошиблись. К вашему сведению: нуль к натуральным числам не относится. А потому однозначных натуральных чисел девять.
— Я же говорила, что Пуся — необыкновенная собака, — сказала девочка с гордостью. — Это она привела нас к истине.
— На то она и Главная ищейка! — заключил я и предложил записать наше первое достижение на бумажных салфетках.
Следующий вопрос, естественно, касался двузначных чисел, и Пусе пришлось опять хохотать, потому что Главный терятель повторил свою первую ошибку. Он рассуждал так: самое большое двузначное число — 99. Но в него входят 9 однозначных. Значит, всего двузначных 90. К сожалению, он не учёл, что среди этих девяноста имеется девять чисел с одинаковыми цифрами: 11, 22, 33, 44, 55, 66, 77, 88, 99. А по условию, цифры в числе могут быть только разные. И стало быть, двузначных натуральных чисел только восемьдесят одно.
Главного терятеля это озадачило.
— Позвольте, позвольте, — запальчиво сказал он, — когда я приобщил к натуральным числам нуль, мне заявили, что он к таковым не относится. Но ведь и среди двузначных натуральных есть девять чисел с нулём: 10, 20, 30, 40, 50, 60, 70, 80, 90. Выходит, их тоже надо вычесть.
Я думал, что теперь хохотать будет не только Пуся, но и девочка. Но, против ожидания, она жалостливо вздохнула.
— Бедный! — сказала она, сочувственно глядя на Главного терятеля. — Неужели вы забыли, какая разница между числами и цифрами? Когда речь шла об однозначных числах, вы имели в виду нуль как число. Теперь мы перешли к двузначным, и в этом случае нуль уже не число, а цифра, означающая, что в разряде пусто…
Нет, до чего милая девочка! Недаром я к ней привязался. Не только весёлая, не только смышлёная, но и добрая. А доброта — великая сила. За примером недалеко ходить. Дружеское сочувствие подействовало на Главного терятеля самым благотворным образом, и он совершенно неожиданно для нас. а также для себя самого выдал весьма дельное замечании.
— Смотрите-ка, — сказал он, — натуральных двузначных чисел — восемьдесят одно. Но что такое 81? Это же 9, умноженное на 9…
— Очень кстати замечено, — похвалил я.
— Почему кстати? — поинтересовалась девочка.
— Сейчас поймёшь. Ведь мы как раз переходим к трёхзначным числам… А это вам не двузначные.
— Уж конечно, — поддакнул Главный терятель. — Во-нервых, их гораздо больше.
А во-вторых? — поинтересовался я. — Не знаете? Во-вторых, среди двузначных чисел попадаются такие, что состоят из двух одинаковых цифр. А среди трёхзначных сверх того есть ещё и такие, что состоят из трёх одинаковых. В числе 552 — две одинаковые цифры, а в числе 555 — три. Так что…
— Так что считать нам не пересчитать, — подхватила девочка.
— Но угадала, засмеялся я. — Так что необходимо найти правило, которое поможет нам и не считать и не пересчитывать. И для этого вернёмся немного обратно. Сколько у нас однозначных чисел? Девять. Теперь подумаем, как из количества однозначных чисел получить количество двузначных? Очевидно, для этого придётся к каждому однозначному числу последовательно приставлять по одной из оставшихся фишек. Начнём с единицы. Сперва приставим к ней 0…
— Затем — единицу, — подсказал Главный терятель.
При этих словах Пуся опять засмеялся, а девочка сказала, что единицы у нас уже нет: ведь к ней-то мы и приставляем оставшиеся фишки и получаем при этом вот что: 10, 12, 13, 14, 15. 16, 17, 18, 19.
— Вот вам и все двузначные числа, начинающиеся с единицы, — подытожил я. — Нетрудно заметить, что их девять. Далее то же проделываем с однозначным числом 2 и получаем ещё девять двузначных чисел: 20, 21, 23, 24, 25, 26, 27, 28, 29…
— Как интересно! — загорелась девочка. — Теперь то же самое проделаем с числом 3, потом с числом 4…
— Но зачем? — возразил я, — Ведь мы уже заметили, что из каждого однозначного числа получается девять двузначных. И так как всего однозначных чисел 9, нам остаётся лишь помножить 9 на 9. Вот почему так кстати оказалось замечание нашего дорогого Главного терятеля. Ведь именно он подметил, что 81 — это 9, умноженное на 9…
В сборник вошли повести Владимира Лёвшина о приключениях незадачливого путешественника Магистра Рассеянных Наук и его неизменной спутницы Единички: «Диссертация Рассеянного Магистра», «Путевые заметки Рассеянного Магистра» и «В поисках похищенной марки». Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Он то и дело совершает ошибки, которые анализируют школьники Клуба «Рассеянного Магистра».
Заблудиться в лабиринте чисел очень просто. Но если вашим проводником согласится стать сама многоуважаемая Арифметика, путешествие удастся на славу. Каждая остановка, а их будет тридцать две (по числу букв алфавита) подарит вам незабываемые впечатления, а задачи, которые Арифметика иногда будет подкидывать своим спутникам, внесут ещё большее разнообразие в этот и без того прихотливый маршрут. Замечательная книга о приключениях мальчика Чита в Лабиринте Чисел и о его проводнице — Арифметике. В увлекательной форме знакомит детей со многими математическими и логическими понятиями.
«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники.
Автор книги в доступной увлекательной форме отвечает на те многочисленные вопросы, которые могут возникнуть у юного любителя музыки, пришедшего в концертный зал на встречу с симфоническим оркестром: откуда взялись музыкальные инструменты, кто и когда придумал нотную запись, о чем и как рассказывает мелодия, как слушать музыку и т. п.
В данном методическом пособии, разработанном в соответствии с ФГТ, представлена непосредственно образовательная деятельность (НОД) по экологическому воспитанию детей 5-6 лет. Особое внимание уделено диагностике педагогического процесса по блокам «Растения», «Животные», «Человек», «Неживая природа». Широко представлена познавательно-исследовательская деятельность Пособие адресовано страшим воспитателям и педагогам ДОУ, родителям и гувернерам.
Используя различные крупы, а также семена овощей, фруктов, цветов, можно изготавливать чудесные оригинальные аппликации, панно, открытки к празднику.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.