Современное состояние биосферы и экологическая политика - [12]
Глава 4
Основные этапы жизни
4.1. Образование мембран – основа начала жизни
Рассматривая гигантское многообразие современных живых организмов, можно прийти к выводу, что существовало множество путей развития, берущих начало от реликтовых форм жизни. На самом деле исследования молекулярной эволюции различных биологических видов сводят все пути, как ветви одного дерева, к главному стволу, у основания которого находится общий прародитель всех существующих сейчас видов.
Известно, что первые живые организмы с клеточной организацией обнаружены в земных слоях возрастом около 3,8 млрд лет. Например, древнейшие окаменевшие микроорганизмы, возраст которых 3,0–3,5 млрд лет, обнаружены в Южной Африке, в так называемой «системе Свазиленд». Этим же временем датируется проживание нитчатых и округлых микроскопических (похожих на бактерии) примитивных организмов, остатки которых (многочисленные и разнообразные – около десятка видов) были обнаружены в кремнистых толщах Западной Австралии (у фермы Норд Пол). Следует отметить еще один важный факт.
Так, при микроскопическом исследовании препаратов, изготовленных из кварцитов Гренландии возрастом 3,8 млрд лет, немецкие ученые обнаружили мелкие круглые или овальные удлиненные тельца, содержащие углеродные соединения. Тельца имели фрагменты капсулы, остатки внешней оболочки, характерной для микроорганизмов. Среди сотен одноклеточных организмов в кварцитах обнаруживаются такие, которые находились в стадии деления.
В сланцах Австралии обнаружены остатки сине-зеленых водорослей и окаменелый кольчатый червь, живший 650 млн лет назад. Удивительно, но эти организмы были похожи на современные. Следовательно, с самого начала возникновения жизни нуклеиновые структуры оставались устойчивыми.
Однако до сих пор не было представлено сколько-нибудь достоверных доказательств того, что древнейшие клетки имели современный генетический аппарат. Скорее всего, они были генетически более простыми формами – протобионтами. Существует мнение (Orgel, 1983, p. 65–71), что основу кода протобионтов составляли нуклеотиды, подобные современным нуклеиновым кислотам (цит. по: Дреймер и др., 1989). Предшественники протобионтов – пробионты кода вообще не имели и синтезировали каталитически активные комплексы не ферментативным путем, каждый раз заново во множество известных в настоящее время процессов, составляющих область химической эволюции. В период существования пробионтов и протобионтов жизнь имела уже вполне организованную форму на основе примитивной клетки и каталитически активных олигомеров.
Можно полагать, что обнадеживающее разрешение этой загадки содержится в исследованиях американских ученых, которым, по-видимому, удалось найти промежуточное звено между ДНК, хранящей информацию о строении белка, и самим белком-биокатализатором.
Так, например, в Массачусетском технологическом институте (Гарвард, США) синтезирована молекула, которая служит именно таким «мостиком», – триациловый эфир аминоаденозина (ТЭА), способный к самокопированию. Эта молекула, как и ДНК при бесклеточном синтезе, служит «затравкой» для образования копий. Поскольку эфирный конец ТЭА обладает «липкими» свойствами (характерными для одиночных цепей нуклеиновых кислот), молекулы эфира и аминоаденозина захватываются им и составные части новой молекулы ТЭА сближаются на расстояние, необходимое для образования ковалентной связи. Характерно, что триациловый эфир и аминоаденозин могут полимеризоваться и без ТЭА-матрицы, но в этом случае реакция идет в 100 раз медлененнее, чем с матрицей, т. е. ТЭА обладает каталитическими свойствами (Science, 1990, Vol. 248, № 4963, p. 1609).
Известно, что наличие каталитических свойств и способности нуклеиновых кислот самокопироваться открыли С. Олтмэн и Т Чек. Что же удалось доказать двум лауреатам Нобелевской премии? Напомним некоторые сведения из молекулярной биологии.
До работ Т Чека и С. Олтмэна ни у одного биохимика не возникало и тени сомнения в том, что биологическими катализаторами могут быть только белки. Правда еще в 60-х гг. XIX в. Ф. Крик, Л. Оргел и К. Возе предполагали, что на ранних этапах эволюции рибонуклеиновая кислота (РНК) могла быть ферментом, т. е. обладать этим свойством. В конце 1970-х гг. было выяснено, что многие гены (особенно у эвкариот) построены мозаично. Они состоят из экзонов (значащих участков) и интронов (соединяющих экзоны, в которых для данного гена не содержится осмысленной информации. Антисмысловые РНК регулируют активность генов. В ходе процессинга особого типа, получившего название сплайсинг, интронные участки РНК вырезаются, а экзонные сшиваются друг с другом в строго определенных местах и в строго определенном порядке. Как правило, сплайсинг обслуживают специальные белки-ферменты, одни из которых разрезают, а другие сшивают полинуклеотидные цепи РНК.
Т. Чек занялся поиском этих ферментов. В результате тонких, оригинальных опытов он обнаружил, что в контрольной пробе, не содержащей никаких белков, сплайсинг шел самопроизвольно. Точнее, интронный участок выбрасывался из РНК, а экзонные участки правильно сшивались автокаталитическим путем, без участия белков-ферментов. Дальнейшие эксперименты, проведенные почти одновременно Т. Чеком и С. Олтмэном на двух разных примерах, показали, что РНК может быть ферментом – она способна катализировать специфические химические превращения поли-нуклеотидных цепей других молекул РНК. Автор этого открытия размышляет следующим образом:
Почему население Земли тысячи лет росло по закону гиперболы? В чем секрет неолитической революции, после которой этот рост стал взрывным? Почему в результате демографического перехода он полностью прекратится? Почему периоды эволюции и истории сокращаются по закону прогрессии к «точке сингулярности»? Почему внеземные цивилизации до сих пор не обнаружены? Кто мы? Зачем мы? Откуда пришли? Куда идём? Мы – результат бессмысленной игры слепых сил природы или запланированный этап эволюции, ступень на пути к Финалу? Здесь вы найдете ответы на все эти вопросы.
Книга раскрывает удивительный мир грибов, богатство их форм и разновидностей. На ее страницах — наши давние знакомцы, постоянные объекты 'тихой охоты' в лесу — шляпочные грибы, а также менее известные — грибы микроскопические. Читатель узнает о том, какой ущерб причиняют грибы сельскому хозяйству, вызывая болезни растений и животных; ознакомится с их полезными свойствами, широко используемыми в микробиологической промышленности при производстве кормовых дрожжей, аминокислот, витаминов, ферментных препаратов, антибиотиков.
Птичьи яйца – важная составляющая нашей культуры, символ плодовитости, неотъемлемый атрибут религиозных верований и мифологических представлений. Издревле за яйцами охотились коллекционеры и зачастую рисковали жизнью, взбираясь по скалистым склонам в поисках уникальных экземпляров. Казалось бы, яйцо устроено очень просто – но эта простота лишь кажущаяся. Один из ведущих орнитологов современности, известный британский популяризатор науки, обладатель множества наград за исследования в области поведенческой экологии и орнитологии, Тим Беркхед делится своими уникальными знаниями и раскрывает множество тайн этого настоящего чуда природы.
"В истории советской биологии самые чёрные страницы связаны с деятельностью Т. Д. Лысенко и его сторонников, добившихся в 30–60 гг. монопольного положения в биологической науке нашей страны. Насильственное распространение идей Лысенко и его практических рекомендаций нанесло науке и сельскохозяйственной практике нашей страны ущерб, исчисляемый миллиардами рублей. Однако, по существу, этот ущерб значительно больше, так как лженаучные идеи Лысенко были внедрены в преподавание биологии в средней и высшей школе, и несколько поколений советских людей были лишены возможности получить правильные представления об основных законах биологии.".
Эта книга не выходила на русском языке, хотя была написана достаточно давно — в 2003 году. Она посвящена интересной теме, которая, к сожалению, редко затрагивается в отечественной научно-популярной литературе: судьбе странных и неуклюжих птиц, которые открывают "чёрный список" видов животных, вымерших по вине человека с 1600 года — дронтов. Но стиль изложения автора значительно отличается от привычного. Вместо краткого описания биологии этих птиц автор рисует нам портрет дронтов "на фоне пейзажа", рассказывая об исторических и культурных событиях, которые прямо или косвенно затрагивали судьбу этих птиц, чаще всего оказывая, увы, резко негативное воздействие на самих птиц и на среду их обитания.
Почему слон большой, а мышь маленькая? Почему водомерка может бегать по воде, а человек нет? Можно ли с помощью чисел описать форму живого организма? Что такое бионика и биоэнергетика? И вообще — кто такой современный биолог? Над этими и другими вопросами заставляет задуматься книга профессора Берлинского университета Роланда Глазера, рассказывающая о тесной связи современной биологии с математикой, физикой, техникой. Актуальность и новизна темы, живой язык, насыщенность конкретными примерами, интересные иллюстрации делают книгу увлекательной для самого широкого круга читателей.