Совместимость. Как контролировать искусственный интеллект - [72]
Перспектива ответить на эти фундаментальные вопросы вызвала у нас восторг, с которым мы едва могли справиться, тем не менее нам далеко не сразу удалось разработать первый алгоритм для IRL[256]. С тех пор было предложено много формулировок и алгоритмов IRL. Имеются формальные гарантии, что алгоритмы работают, то есть могут принести достаточно информации о предпочтениях существа, чтобы быть способными действовать столь же успешно, что и наблюдаемое существо[257].
Пожалуй, самый простейший путь к пониманию IRL состоит в следующем: наблюдатель отталкивается от некоего общего предположения об истинной функции вознаграждения и уточняет это предположение по мере дальнейшего наблюдения за поведением. На языке Байесова подхода[258]: начнем с априорной вероятности возможных функций вознаграждения и будем уточнять это распределение вероятностей по мере появления данных>В. Предположим, например, что робот Робби наблюдает за человеком Гарриет и гадает, в какой степени она предпочитает место у прохода месту у иллюминатора. Первоначально он находится в неопределенности по этому вопросу. Теоретически Робби может рассуждать так: «Если бы Гарриет действительно хотела сидеть ближе к проходу, то изучила бы схему расположения мест, чтобы узнать, доступно ли место у прохода, вместо того чтобы согласиться на место у иллюминатора, которое предложила ей авиакомпания. Однако она этого не сделала, хотя, вероятно, заметила, что это место у иллюминатора, и вроде бы не торопилась. Следовательно, сейчас значительно более вероятно, что ей все равно, где сидеть, или она даже предпочитает место у прохода».
Самым потрясающим примером IRL в действии является работа моего коллеги Питера Эббила по обучению исполнению фигур высшего пилотажа на вертолете[259]. Опытные пилоты могут заставить модели вертолетов делать потрясающие трюки: петли, спирали, маятникообразные движения и т. д. Оказалось, что попытки копировать действия человека не приносят особого результата из-за невозможности точно воспроизвести условия — если повторять те же последовательности управляющих действий в других обстоятельствах, это может закончиться катастрофой. Вместо этого алгоритм изучает, чего хочет пилот, в форме ограничений траектории, движение по которой может осуществить. Этот подход дает даже лучшие результаты, чем у эксперта, поскольку у людей более медленная реакция и они постоянно совершают мелкие ошибки, которые вынуждены исправлять.
Игры в помощника
Метод IRL уже является важным инструментом создания эффективных ИИ-систем, но в нем делается ряд упрощающих допущений. Первое — что робот воспримет функцию вознаграждения, когда изучит ее путем наблюдения за человеком, следовательно, сможет выполнять то же задание. Это прекрасно работает в случае управления автомобилем или вертолетом, но не относится к питью кофе: робот, наблюдающий за моим утренним ритуалом, усвоит, что я (иногда) хочу кофе, но не научится сам его хотеть. Решить эту проблему легко — нужно лишь сделать так, чтобы робот ассоциировал предпочтения с человеком, а не с самим собой.
Второе упрощающее допущение IRL состоит в том, что робот наблюдает за человеком в ситуации «единственного принимающего решения агента». Например, предположим, что робот учится в медицинском институте, чтобы стать хирургом, наблюдая за специалистом. Алгоритмы IRL предполагают, что человек выполняет операцию обычным оптимальным способом, как если бы робота рядом не было. Однако это не так: хирург мотивирован помочь роботу (как и любому другому студенту) обучиться хорошо и быстро и соответственным образом меняет свое поведение. Он может объяснять свои действия, обращать внимание на ошибки, которые следует избегать, — скажем, делать слишком глубокий разрез или шить слишком туго, — может описывать манипуляции в нештатной ситуации, если во время операции что-нибудь случилось. Никакие из этих действий не имеют смысла, если выполняешь операцию без студентов, и алгоритмы IRL не смогут понять, какие предпочтения за ними стоят. Поэтому мы должны будем обобщить IRL, перейдя от ситуации одного агента к ситуации с множественными агентами, а именно — создать алгоритмы обучения, работающие в случае, когда человек и робот являются частью общей среды и взаимодействуют друг с другом.
Человек и робот в одной среде — это пространство теории игр, как в том примере, где Алиса била пенальти в ворота Боба. В этой первой версии теории мы предполагаем, что человек имеет предпочтения и действует соответственно им. Робот не знает предпочтений человека, но все равно хочет их удовлетворить. Мы будем называть любую такую ситуацию
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
Специалист по проблемам мирового здравоохранения, основатель шведского отделения «Врачей без границ», создатель проекта Gapminder, Ханс Рослинг неоднократно входил в список 100 самых влиятельных людей мира. Его книга «Фактологичность» — это попытка дать читателям с самым разным уровнем подготовки эффективный инструмент мышления в борьбе с новостной паникой. С помощью проверенной статистики и наглядных визуализаций Рослинг описывает ловушки, в которые попадает наш разум, и рассказывает, как в действительности сегодня обстоят дела с бедностью и болезнями, рождаемостью и смертностью, сохранением редких видов животных и глобальными климатическими изменениями.
Американский генетик Дэвид Райх – один из главных революционеров в области изучения древней ДНК, которая для понимания истории человечества оказалась не менее важной, чем археология, лингвистика и письменные источники. В своей книге Райх наглядно показывает, сколько скрытой информации о нашем далеком прошлом содержит человеческий геном и как радикально геномная революция меняет наши устоявшиеся представления о современных людях. Миграции наших предков, их отношения с конкурирующими видами, распространение культур – все это предстает в совершенно ином свете с учетом данных по ДНК ископаемых останков.
Все решения и поступки зарождаются в нашей психике благодаря работе нейронных сетей. Сбои в ней заставляют нас страдать, но порой дарят способность принимать нестандартные решения и создавать шедевры. В этой книге нобелевский лауреат Эрик Кандель рассматривает психические расстройства через призму “новой биологии психики”, плода слияния нейробиологии и когнитивной психологии. Достижения нейровизуализации, моделирования на животных и генетики помогают автору познавать тайны мозга и намечать подходы к лечению психических и даже социальных болезней.
«Уравнение Бога» – это увлекательный рассказ о поиске самой главной физической теории, способной объяснить рождение Вселенной, ее судьбу и наше место в ней. Знаменитый физик и популяризатор науки Митио Каку прослеживает весь путь удивительных открытий – от Ньютоновой революции и основ теории электромагнетизма, заложенных Фарадеем и Максвеллом, до теории относительности Эйнштейна, квантовой механики и современной теории струн, – ведущий к той великой теории, которая могла бы объединить все физические взаимодействия и дать полную картину мира.