Сомневайся во всем. С комментариями и иллюстрациями - [40]
Следовательно, все, что для разрешения трудности надлежит рассматривать как единицу, мы будем обозначать одним только знаком, который можно изображать ad libitum, но для большего удобства мы воспользуемся строчными буквами а, b, с и т. д., чтобы выражать уже известные величины, и прописными A, В, С для выражения неизвестных величин. Часто мы будем ставить цифры 1,2,3,4 и т. д. либо впереди этих знаков для указания числа величин, либо позади, для того чтобы обозначить количество отношений, которые будут в них мыслиться. Так, например, если я записываю: 2а>3, то это одно и то же, как если бы я говорил: удвоенная величина, обозначаемая буквой а, содержащая 3 отношения. Таким способом мы не только сократим многие выражения, но, что особенно важно, будем выражать термины предложений в столь чистом и простом виде, что, не упуская ничего полезного, мы в то же время не допустим в них ничего излишнего, что напрасно занимало бы ум в то время, когда ему нужно вмещать одновременно множество объектов.
Для того чтобы все это было более понятно, обратим внимание прежде всего на то, что счетчики имеют обыкновение обозначать отдельные величины многими единицами или каким-либо числом; мы же здесь отвлечемся от чисел не менее, чем несколько ранее от геометрических фигур или от каких-либо других вещей. Мы делаем это не только во избежание скуки от длинных и ненужных вычислений, но в особенности еще и для того, чтобы те части предмета, которые составляют сущность трудности, были всегда отчетливо видны и не скрывались за бесполезными числами. Так, например, если нужно найти основание прямоугольного треугольника, данные катеты которого выражаются в числах 9 и 12, то счетчик скажет, что оно равно √225, или 15; мы же, положив вместо 9 и 12 а и b, найдем, что основание равно √а>2 + b>2, и эти два члена а>2 и b>2, которые были скрыты в числе, останутся в нашей формуле раздельными.
Современное обозначение знака корня (√) впервые употребил в 1525 году немецкий математик Кристоф Рудольф. Этот символ происходит от стилизованной первой буквы слова radix (корень). Черта над подкоренным выражением вначале отсутствовала, но позже ее вводит Декарт вместо скобок, и эта черта вскоре сливается со знаком корня.
Нужно также обратить внимание на то, что под числом отношений необходимо разуметь пропорции, идущие друг за другом в непрерывном порядке, пропорции, которые в обыкновенной алгебре стараются выражать многими измерениями и многими фигурами. Первую из них называют корнем, вторую – квадратом, третью – кубом, четвертую – биквадратом и т. д. Эти термины, признаюсь, очень долго вводили меня в заблуждение, ибо мне казалось, что для моего воображения не может быть ничего более ясного, чем линия и квадрат, чем куб и другие фигуры, придуманные наподобие этих. Хотя с помощью их я разрешил немало проблем, но после многих опытов я наконец убедился, что такой способ понимания не помог мне найти ничего, что я не сумел бы понять много легче и много яснее и без него, и нужно совершенно отбросить все эти выражения, чтобы они не затемняли наших понятий, ибо та самая величина, которая называется кубом или биквадратом, не может между тем по предшествующему правилу быть представлена в воображении иначе как в виде линии или в виде поверхности. Поэтому нужно еще особенно отметить, что корень, квадрат, куб и пр. являются не чем иным, как последовательно пропорциональными величинами, которым всегда предшествует наперед заданная единица, уже упомянутая нами выше. Первая пропорциональная величина стоит непосредственно и в одном отношении к этой единице, вторая – через посредство первой, а следовательно, связана с ней двумя отношениями, третья – через посредство первой и второй и связана с ней тремя отношениями и т. д. Поэтому мы будем теперь называть первой пропорциональной ту величину, которая в алгебре называется корнем, второй пропорциональной – ту, которая называется квадратом, и т. д.
И наконец, нужно обратить внимание на то, что, хотя мы здесь и абстрагируем термины трудности от чисел, для того чтобы исследовать ее природу, но она, однако, часто оказывается легче разрешимой с помощью данных чисел, чем без них. Это происходит при двойном применении чисел, ибо, как мы видели выше, именно одни и те же числа объясняют то порядок, то меру. Поэтому, после того, как мы пытались разрешить трудность, выразив ее в общих терминах, нужно снова свести ее на эти числа, для того чтобы узнать, не могут ли они дать нам более простого решения. Например, найдя, что основание прямоугольного треугольника с катетами а и b равно √а>2 + b>2, где вместо а>2 нужно взять 81 и вместо b>2 – 144, числа, дающие в сумме число 225, корень которого (т. е. средняя пропорциональная между единицей и 225) равен 15, мы из этого узнаем, что основание 15 соизмеримо со сторонами 9 и 12, но не потому вообще, что оно является основанием такого треугольника, отношение сторон которого равно 3 к 4. Все это мы различаем потому, что стремимся достичь очевидного и отчетливого познания вещей, счетчики же не делают этого потому, что удовлетворяются отысканием нужного им числа, не замечая зависимости его от данных чисел, между тем как только в этом и заключается наука.
Рене Декарт – выдающийся математик, физик и физиолог. До сих пор мы используем созданную им математическую символику, а его система координат отражает интуитивное представление человека эпохи Нового времени о бесконечном пространстве. Но прежде всего Декарт – философ, предложивший метод радикального сомнения для решения вопроса о познании мира. В «Правилах для руководства ума» он пытается доказать, что результатом любого научного занятия является особое направление ума, и указывает способ достижения истинного знания.
В настоящий том входят три сочинения знаменитого философа: «Рассуждения о методе», «Начала философии», «Страсти души». «Я мыслю, следовательно – существую!» – самая знаменитая цитата мыслителя. Что она значит на самом деле, в чем ее суть?
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Если рассуждение это покажется слишком длинным для прочтения за один раз, то его можно разделить на шесть частей. В первой окажутся различные соображения относительно наук; во второй – основные правила метода, найденного автором; в третьей – некоторые из правил морали, извлеченных автором из этого метода; в четвертой – доводы, с помощью коих он доказывает существование Бога и человеческой души, которые составляют основание его метафизики; в пятой можно будет найти последовательность вопросов физики, какие он рассмотрел, и, в частности, объяснение движения сердца и рассмотрение некоторых других трудных вопросов, относящихся к медицине, а также различие, существующее между нашей душой и душой животных; и в последней – указание на то, что, по мнению автора, необходимо для того, чтобы продвинуться в исследовании природы дальше, чем это удалось ему, а также объяснение соображений, побудивших его писать.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В настоящий том входят произведения французского философа XVII в., представляющие достаточно полную картину его воззрений на мир, познание, человека: «Правила для руководства ума» (в новом переводе), «Мир, или Трактат о свете», «Рассуждение о методе», «Первоначала философии» и др. Включенная в том избранная переписка (впервые публикуемая на русском языке) способствует лучшему уяснению взглядов мыслителя. Впервые на русском языке публикуется работа «Замечания на некую программу, изданную в Бельгии в конце 1647 года…».http://fb2.traumlibrary.net.
"В настоящее время большая часть философов-аналитиков привыкла отделять в своих книгах рассуждения о морали от мыслей о науке. Это, конечно, затрудняет понимание того факта, что в самом центре и этики и философии науки лежит общая проблема-проблема оценки. Поведение человека может рассматриваться как приемлемое или неприемлемое, успешное или ошибочное, оно может получить одобрение или подвергнуться осуждению. То же самое относится и к идеям человека, к его теориям и объяснениям. И это не просто игра слов.
Лешек Колаковский (1927-2009) философ, историк философии, занимающийся также философией культуры и религии и историей идеи. Профессор Варшавского университета, уволенный в 1968 г. и принужденный к эмиграции. Преподавал в McGill University в Монреале, в University of California в Беркли, в Йельском университете в Нью-Хевен, в Чикагском университете. С 1970 года живет и работает в Оксфорде. Является членом нескольких европейских и американских академий и лауреатом многочисленных премий (Friedenpreis des Deutschen Buchhandels, Praemium Erasmianum, Jefferson Award, премии Польского ПЕН-клуба, Prix Tocqueville). В книгу вошли его работы литературного характера: цикл эссе на библейские темы "Семнадцать "или"", эссе "О справедливости", "О терпимости" и др.
Эта книга — сжатая история западного мировоззрения от древних греков до постмодернистов. Эволюция западной мысли обладает динамикой, объемностью и красотой, присущими разве только эпической драме: античная Греция, Эллинистический период и императорский Рим, иудаизм и взлет христианства, католическая церковь и Средневековье, Возрождение, Реформация, Научная революция, Просвещение, романтизм и так далее — вплоть до нашего времени. Каждый век должен заново запоминать свою историю. Каждое поколение должно вновь изучать и продумывать те идеи, которые сформировало его миропонимание. Для учащихся старших классов лицеев, гимназий, студентов гуманитарных факультетов, а также для читателей, интересующихся интеллектуальной и духовной историей цивилизации.
Занятно и поучительно прослеживать причудливые пути формирования идей, особенно если последние тебе самому небезразличны. Обнаруживая, что “авантажные” идеи складываются из подхваченных фраз, из предвзятой критики и ответной запальчивости — чуть ли не из сцепления недоразумений, — приближаешься к правильному восприятию вещей. Подобный “генеалогический” опыт полезен еще и тем, что позволяет сообразовать собственную трактовку интересующего предмета с его пониманием, развитым первопроходцами и бытующим в кругу признанных специалистов.
Монография посвящена исследованию становления онтологической парадигмы трансгрессии в истории европейской и русской философии. Основное внимание в книге сосредоточено на учениях Г. В. Ф. Гегеля и Ф. Ницше как на основных источниках формирования нового типа философского мышления.Монография адресована философам, аспирантам, студентам и всем интересующимся проблемами современной онтологии.
М.Н. Эпштейн – известный филолог и философ, профессор теории культуры (университет Эмори, США). Эта книга – итог его многолетней междисциплинарной работы, в том числе как руководителя Центра гуманитарных инноваций (Даремский университет, Великобритания). Задача книги – наметить выход из кризиса гуманитарных наук, преодолеть их изоляцию в современном обществе, интегрировать в духовное и научно-техническое развитие человечества. В книге рассматриваются пути гуманитарного изобретательства, научного воображения, творческих инноваций.