Солнечное вещество - [4]
Поставьте на пути лучей спектроскоп — и линии спектра безошибочно расскажут вам о химическом составе тела, испускающего лучи.
Такой способ угадывать химический состав по линиям спектра был назван спектральным анализом.
Бунзен стал исследовать множество разных веществ. Все, что попадалось ему под руку, он тащил к спектроскопу. Он вносил в пламя горелки и каплю морской воды, и каплю молока, и пепел сигары, и кусочки всевозможных минералов. В спектре пепла гаванской сигары он увидел желтую линию натрия и красные линии лития и калия; в спектре кусочка мела он увидел линии натрия, лития, калия, кальция, стронция. Множество разных веществ исследовал таким образом Бунзен, раскаляя их в жарком пламени горелки и наблюдая спектр раскаленных паров.
Новый способ распознавать химический состав оказался необычайно чувствительным и точным. Бунзен находил спектральные линии редкого металла лития в тех веществах, в которых лития так мало, что никаким другим способом его обнаружить невозможно. Литий был найден спектроскопом и в морской воде, и в золе водорослей, прибитых Гольфстримом к берегам Шотландии, и в ключевой воде, которую Бунзен взял из источника, бьющего из гранитной
скалы в окрестностях Гейдельберга, и в кусках гранита, отколотого от той же скалы, и в листьях винограда, выросшего на скале, и в молоке коровы, которая ела эти листья, и в крови людей, которые пили это молоко.
Но газовая горелка и спектроскоп помогли химику Бунзену сделать еще более важное открытие: с их помощью он обнаружил два новых металла, о существовании которых никто и не подозревал. В спектре саксонского минерала лепидолита и в спектре рассола, полученного при выпаривании дюркхеймской минеральной воды, он увидел спектральные линии, которые не совпадали с линиями знакомых химикам веществ. Бунзен понял, что и в лепидолите, и в дюркхеймской минеральной воде скрыты какие-то еще неизвестные вещества.
И в самом деле, вскоре Бунзену удалось извлечь из минерала лепидолита новый металл, который он назвал рубидием, а из дюркхеймской воды другой новый металл, которому он дал имя цезий[4].
Открытие рубидия и цезия было первой большой победой спектрального анализа.
ЗВЕЗДЫ В ЛАБОРАТОРИИ
Шел год за годом. Физики и химики изучали все новые и новые спектры: спектры раскаленных паров разных солей, спектры раскаленных и расплавленных металлов, спектры разреженных газов, которые светятся, когда по ним проходит электрический ток, спектр электрической искры, спектр лучей, испускаемых раскаленной известью и прошедших сквозь окрашенные стекла, сквозь цветные жидкости, газы и пары.
Рис. 4. Усовершенствованный спектроскоп с четырьмя призмами. Переходя из призмы в призму, веер лучей разворачивается все шире и шире
Спектроскоп, когда-то построенный Кирхгофом из сигарной коробки, стеклянного клина и двух половинок подзорной трубы, стал родоначальником многих других спектроскопов, более удобных для работы и более точных (рис. 4).
Сам Кирхгоф много потрудился над тем, чтобы усовершенствовать свое изобретение. Вскоре спектроскопы стали изготовляться на оптических фабриках. В каждой лаборатории появился спектроскоп. Немецкие оптические
фирмы сконструировали дорогие и сложно устроенные спектральные приборы для точных измерений. Лондонская фирма «Браунинг» выпустила в продажу дешевые карманные спектроскопы.
Спектроскоп пригодился и физикам, и химикам, и инженерам. Пригодился он даже сыщикам. Увидев на полу или на одежде подозрительное темное пятно, похожее на засохшую кровь, сыщик смывает пятно спиртом. А по спектру лучей, прошедших через спирт, в лаборатории могут сразу сказать, растворена ли в нем кровь[5].
Но гораздо больше, чем сыщикам, пригодился спектроскоп людям, которые изучают самые далекие светящиеся тела — планеты и звезды.
До изобретения спектроскопа никто и мечтать не смел о том, что когда-нибудь нам станет известно, из чего состоят звезды, планеты и Солнце.
Никто не знал, входят ли в состав небесных светил те же самые вещества, которые мы встречаем и у себя на Земле, или же небесные светила состоят из каких-то особенных, небесных веществ.
Только открытие Кирхгофа и Бунзена помогло людям затащить звезды в лабораторию, создать новую науку — небесную химию, химию небесных светил.
Астрономы всего мира с жадностью ухватились за спектральный анализ и стали применять его в самых разнообразных исследованиях. Здесь не хватит места рассказать обо всех тех удивительных вещах, которые были открыты с помощью спектрального анализа.
Только об одном открытии я расскажу здесь — о том открытии, с которого начинается необычайная история вещества, найденного на Солнце.
СПЕКТРОСКОП ИССЛЕДУЕТ СОЛНЦЕ
Во время полного солнечного затмения, когда все Солнце закрыто от нас Луной, из-за черного диска Луны внезапно вырываются красные язычки пламени. Язычки кажутся нам маленькими, а на самом деле они во много раз длиннее диаметра нашей Земли.
Это извержения и взрывы на огненной поверхности Солнца.
Такие взрывы бывают на Солнце каждый день и по многу раз в день. Но простым глазом их можно наблюдать только во время полного солнечного затмения, когда лучезарный диск закрыт Луной и потому не ослепляет нас.
![Занимательная квантовая физика](/storage/book-covers/4b/4b011a522841faa6332fbe525eea46ac01818e40.jpg)
Книга известного советского физика Матвея Бронштейна «Занимательная квантовая физика» познакомит читателя с миром крошечных, невидимых для простого глаза частиц — атомов и электронов. А также расскажет об ученых: Вильгельме Рентгене, Анри Беккереле, Пьере и Марии Кюри и многих других, обнаруживших и изучавших природу излучения. Как Дмитрий Менделеев предсказывал свойства еще не открытых элементов? Для чего раньше использовали радий? Что такое альфа-частицы? Почему на некоторых минералах геологи обнаруживают странные ореолы? Обо всем этом читатель узнает из книги. Для среднего школьного возраста.
![Атомы и электроны](/storage/book-covers/15/155d4b043e5c8bbf3e03f4b5007b6bf89eb4238e.jpg)
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
![Солнечное вещество и другие повести, а также Жизнь и судьба Матвея Бронштейна и Лидии Чуковской](/storage/book-covers/05/05bec30665af51562cc2092cb17d73234064b807.jpg)
Матвей Бронштейн (1906–1938) за свою короткую жизнь успел войти в историю и фундаментальной физики, и научно-художественной литературы. Его приключенческие повести о научных открытиях и изобретениях стали образцом нового литературного жанра. Он рассказал о веществе, обнаруженном сначала на Солнце и лишь много лет спустя на Земле. О случайном открытии невидимых X-лучей, принесших Рентгену самую первую Нобелевскую премию по физике, а человечеству – прибор, позволяющий видеть насквозь. И успел рассказать об изобретении радио, без которого не было бы ни телевидения, ни интернета.
![Грезы президента. Из личных дневников академика С. И. Вавилова](/storage/book-covers/92/92b32831d936b18dc70e59826f323be31a98d9aa.jpg)
Жизнь физика, историка науки и крупного научного администратора Сергея Ивановича Вавилова (1891–1951) необычна. Возможно, при взгляде из XXI века уже не слишком значительными покажутся и его научные достижения, и его героическая, подвижническая деятельность в качестве президента Академии наук (которая к тому же пришлась на годы позорного разгрома генетики и других подобных идеологических кампаний). Однако недавно впервые опубликованный личный дневник, который академик Вавилов тайно вел на протяжении долгих лет, открывает новое удивительное измерение его интеллектуальной жизни.
![Физика и жизнь. Законы природы: от кухни до космоса](/storage/book-covers/9a/9a51e894bae626a8ce9b8106def80209d1892e5e.jpg)
Прочитав эту книгу, вы не только пополните свои знания в области физики, но и, возможно, измените отношение к этому предмету, если раньше не очень-то его жаловали. Порой вы даже будете раздосадованы тем, что раньше этого не замечали и не применяли. А удивляться есть чему, поскольку физика буквально пронизывает нашу жизнь; она поистине вездесуща и объясняет многие явления и процессы, от приготовления пиццы, тостов и попкорна, до образования жемчужин, вращения Земли и строительства кораблей для плавания во льдах.
![Атомный проект. Жизнь за «железным занавесом»](/storage/book-covers/14/147207c77e69f8343172932447362c1e28ed7976.jpg)
Ученик великого Э. Ферми, сотрудник Ф. Жолио-Кюри, почетный член Итальянской академии деи Линчей Бруно Понтекорво родился в Италии, работал во Франции, США, Канаде, Англии, а большую часть своей жизни прожил в России. Бруно Понтекорво известен как один из ведущих физиков эпохи «холодной войны». В то время, как главы государств мечтали о мировом господстве, которое им подарит ядерное оружие, лучшие ученые всего мира боролись за «ядерное равновесие» и всеми возможными способами старались не разрывать прочные научные связи, помогавшие двигать науку вперед.
![Новый физический фейерверк](/storage/book-covers/30/30c3e0e62859deb29034827df91379fd6870228b.jpg)
Эта книга поможет вам понять, как устроен окружающий мир и чем занимается физика как наука. Легким и неформальным языком она расскажет о физических законах и явлениях, с которыми мы сталкиваемся в повседневной жизни.
![Ньютон. Закон всемирного тяготения. Самая притягательная сила природы](/storage/book-covers/d9/d9cb42f7058f82f91cad0cc7cf130d549a8c5d55.jpg)
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.