События и люди - [105]
Чтобы читателям была ясна ситуация, придется сделать несколько предварительных замечаний. Еще в 1920-е гг. был достигнут немалый прогресс в изучении газоразрядной плазмы — ионизованного газа малой плотности. Известны работы Ленгмюра и в особенности статья Тонкса и Ленгмюра [5], опубликованная в 1929 г. Эти авторы самосогласованным образом рассматривали движение частиц (электронов и ионов) и уравнения электромагнитного поля (уравнения Максвелла) и, в частности, понимали, что в плазме могут распространяться не только поперечные, но и продольные волны (колебания) с характерной циклической плазменной частотой ω>p, причем ω>p>2 = 4πe>2N/m (здесь e и m — заряд и масса электрона, а N — концентрация электронов). В статье [5] рассмотрен и вопрос о вкладе ионов, а также некоторые другие, но кинетические уравнения для частиц не использовались. Последнее, на первый взгляд, может вызвать удивление, поскольку кинетическое уравнение Больцмана широко применялось для описания процессов в газах уже много десятилетий до появления этой работы. По всей вероятности, дело в том, что в плазме, в отличие от неионизованных газов, совсем непросто записать выражение для нетривиальной части уравнения Больцмана, а именно для столкновительного члена (интеграла столкновений) Stf (здесь и ниже пользуюсь обозначениями, принятыми в книге [6]). С учетом этого члена уравнение Больцмана для функции распределения частиц f(t, r, p) имеет вид
где v = p/m — скорость частиц, E и B — напряженности электрического и магнитного полей (частицы считаем электронами, их заряд равен е). При рассмотрении процессов переноса (электропроводности, теплопроводности и т. п.) поля E и B обычно считаются внешними, заданными, и, как было сказано, главным является уточнение смысла интеграла столкновений Stf. Для плазмы эта нетривиальная задача была в хорошем приближении решена Л. Д. Ландау в 1936 г. [7] (см. [6, § 41]). Имеется, однако, круг вопросов, для анализа которых поля E и B нельзя считать заданными, а нужно учитывать также и поля, создаваемые частицами самой плазмы. Простейшая задача такого типа — распространение волн в плазме. Для ее решения, да и в более широком плане, А. А. Власов в опубликованной в 1938 г. работе [8] предложил использовать кинетическое уравнение с согласованным полем. В этом методе интеграл столкновений Stf вообще отбрасывается, но поля E и B считаются полными, т. е. учитываются также поля, созданные частицами самой плазмы. В подобных условиях поля E и B подчиняются уравнениям Максвелла. В простейшем случае, когда речь идет о продольном поле, в линейном приближении нужно использовать уравнения
где положено f = f>0 + δf, f>0 — невозмущенная функция распределения и δf — малая добавка; при этом в (2) для простоты считается, что функция /о отвечает состоянию, в котором заряд и ток равны нулю (разумеется, заряд электронов компенсируется зарядом ионов). Таким образом, для потенциала получается уравнение Пуассона ∆ф = 4πeʃδfdp. Уравнения (2) или более общие для полей E и B, подчиняющихся уравнениям Максвелла, в литературе нередко называют уравнениями Власова. Нисколько не умаляя заслуги Власова, применившего такое самосогласованное приближение, я не вижу разумных оснований для подобного словоупотребления, ибо речь идет об укороченном уравнении Больцмана и уравнениях Максвелла (или уравнении Пуассона). Любопытно, что А. А. Рухадзе в своей книге [9], о которой речь пойдет ниже, на с. 73 похваляется тем, что всячески популяризировал термин «уравнение Власова». Вместе с тем в учебнике [10], одним из авторов и редактором которого является тот же Рухадзе, посвященном уравнениям типа (2), параграф 3. 2 назван «Кинетическое уравнение с самосогласованным полем». Думаю, что такое название правильнее всего. Но, разумеется, вопрос о терминологии не имеет особого значения, и, когда говорят «уравнения Власова», физики понимают, о чем идет речь, а по сути дела только это и важно. Я позволил себе сделать это отступление потому, что в книге [9] на с. 73 Рухадзе утверждает также, что я якобы «всеми фибрами своей души не любил Власова» и оказывал «яростное сопротивление» использованию термина «уравнение Власова». И то и другое, как и многое в [9], совершенно не соответствует действительности и является плодом богатого и, к сожалению, весьма недоброкачественного воображения Рухадзе[57].
Вернемся, однако, к существу дела. Полагая в (2) функцию δf пропорциональной exp[i(kr — ωt)]> находим
Как хорошо известно, из электродинамики, для продольных волн (см., напр., [2, 7, 10, 11])
где ε>l — продольная диэлектрическая проницаемость, связывающая для продольного поля поляризацию P = ((ε>l - 1)/4π)E полем E. Но поляризация P выражается через δf соотношением (см., напр., [7, § 29])
Подставляя сюда решение (3), приходим к дисперсионному соотношению (4) в виде
Это выражение Власов и получил, но, по сути дела, проигнорировал имеющуюся в (6), вообще говоря, расходимость интеграла при
Поэтому Власов пришел к выводу о существовании в равновесной (максвелловской) плазме незатухающих плазменных волн, для которых
В последние годы почти все публикации, посвященные Максиму Горькому, касаются политических аспектов его биографии. Некоторые решения, принятые писателем в последние годы его жизни: поддержка сталинской культурной политики или оправдание лагерей, которые он считал местом исправления для преступников, – радикальным образом повлияли на оценку его творчества. Для того чтобы понять причины неоднозначных решений, принятых писателем в конце жизни, необходимо еще раз рассмотреть его политическую биографию – от первых революционных кружков и участия в революции 1905 года до создания Каприйской школы.
Книга «Школа штурмующих небо» — это документальный очерк о пятидесятилетнем пути Ейского военного училища. Ее страницы прежде всего посвящены младшему поколению воинов-авиаторов и всем тем, кто любит небо. В ней рассказывается о том, как военные летные кадры совершенствуют свое мастерство, готовятся с достоинством и честью защищать любимую Родину, завоевания Великого Октября.
Автор книги Герой Советского Союза, заслуженный мастер спорта СССР Евгений Николаевич Андреев рассказывает о рабочих буднях испытателей парашютов. Вместе с автором читатель «совершит» немало разнообразных прыжков с парашютом, не раз окажется в сложных ситуациях.
Из этой книги вы узнаете о главных событиях из жизни К. Э. Циолковского, о его юности и начале научной работы, о его преподавании в школе.
Со времен Макиавелли образ политика в сознании общества ассоциируется с лицемерием, жестокостью и беспринципностью в борьбе за власть и ее сохранение. Пример Вацлава Гавела доказывает, что авторитетным политиком способен быть человек иного типа – интеллектуал, проповедующий нравственное сопротивление злу и «жизнь в правде». Писатель и драматург, Гавел стал лидером бескровной революции, последним президентом Чехословакии и первым независимой Чехии. Следуя формуле своего героя «Нет жизни вне истории и истории вне жизни», Иван Беляев написал биографию Гавела, каждое событие в жизни которого вплетено в культурный и политический контекст всего XX столетия.
Автору этих воспоминаний пришлось многое пережить — ее отца, заместителя наркома пищевой промышленности, расстреляли в 1938-м, мать сослали, братья погибли на фронте… В 1978 году она встретилась с писателем Анатолием Рыбаковым. В книге рассказывается о том, как они вместе работали над его романами, как в течение 21 года издательства не решались опубликовать его «Детей Арбата», как приняли потом эту книгу во всем мире.