События и люди - [100]
С позиций современных представлений, сформулированных в основном Н. Н. Боголюбовым в 1946 г., обсуждаются работы Л. Д. Ландау 1936 г., А. А. Власова 1938 г. и Л. Д. Ландау 1946 г., заложившие основы кинетической теории плазмы как газа кулоновски взаимодействующих частиц. Дана оценка той дискуссии, которая возникла между Л. Д. Ландау и А. А. Власовым в 1949 г.
1. 1996-й год является юбилейным: на него приходится ряд дат, которые связаны с некоторыми вехами в развитии кинетической теории плазмы как газа системы частиц с электромагнитным взаимодействием. Шестьдесят лет назад, т. е. в 1936 г., была опубликована одна из наиболее цитируемых работ Л. Д. Ландау «Кинетическое уравнение в случае кулоновского взаимодействия» [1], в которой был получен знаменитый интеграл упругих кулоновских столкновений заряженных частиц — интеграл Ландау, играющий важную роль в кинетической теории плазмы. Десять лет спустя, в 1946 г., появилась не менее популярная работа Л. Д. Ландау «О колебаниях электронной плазмы» [2], в которой исходя из кинетического уравнения Власова было открыто новое явление — «бесстолкновительное» затухание электронных ленгмюровских колебаний, получившее название затухания Ландау. А в промежутке между этими статьями Л. Д. Ландау в 1938 г. была опубликована основополагающая работа А. А. Власова «О вибрационных свойствах электронного газа» [3], в которой было получено кинетическое уравнение для плазмы в первом основном приближении по кулоновскому взаимодействию — приближении взаимодействия через самосогласованное поле. Это уравнение получило название уравнения Власова. Хотя в то время оно было недостаточно строго обосновано, но именно полученные с помощью этого уравнения, в том числе в первую очередь самим А. А. Власовым, результаты составили основу современной кинетической теории плазмы. Строгое обоснование уравнения Власова было дано в 1946 г. в монографии Н. Н. Боголюбова «Проблемы динамической теории в статистической физике» [4]. В 1996 г. исполняется 50 лет и этой прекрасной книге, в которой Н. Н. Боголюбовым было обосновано не только уравнение Власова как основное приближение для газа кулоновски взаимодействующих частиц, но также показано, что интеграл столкновений Ландау учитывает следующий порядок по кулоновскому взаимодействию частиц в плазме. Уравнение Власова, дополненное интегралом столкновений Ландау, образует общее кинетическое уравнение для плазмы, которое следовало бы назвать уравнением Власова-Ландау. Таким образом, творцами кинетической теории плазмы следует считать А. А. Власова и Л. Д. Ландау. Ниже мы кратко обсудим работы Л. Д. Ландау [1, 2] и А. А. Власова [3] с позиции сегодняшнего дня (которая, по существу, совпадает с позицией, предложенной в монографии Н. Н. Боголюбова [4]). В заключение же, подводя итог, дадим свою оценку (и только оценку) критической статье четырех авторов [5] и ответу А. А. Власова, который, к сожалению, был опубликован в малоизвестном в то время ведомственном журнале [6].
2. К началу 1930-х годов возникла острая необходимость в построении кинетической теории плазмы как нейтрального в целом газа заряженных частиц: электронов и ионов. Она диктовалась в первую очередь экспериментальными работами И. Ленгмюра, исследовавшего релаксационные процессы в плазме газового разряда в широком диапазоне плотностей и температур частиц. Первым, кто достиг существенного прогресса на этом пути, был Л. Д. Ландау, который в 1936 г. получил кинетическое уравнение для газа с кулоновским взаимодействием частиц. При выводе кинетического уравнения для функции распределения f(p, r, t) определяющей вероятность обнаружения частицы с импульсом p в точке r в момент времени t, Ландау исходил из уравнения Больцмана, в котором изменение f(p, r, t) определяется парными столкновениями[49]
Здесь
а (df/dt)>st — интеграл парных упругих столкновений, являющийся билинейным функционалом f(p, r, t). В соответствии с духом больцмановского приближения сила F может быть только внешней, так что и поля E>0 и B>0 могут быть только внешними, их источниками в уравнениях Максвелла являются заданные плотности заряда ρ>0 и тока j>0.
Здесь уместно заметить, что при написании уравнения (1) для обычного газа незаряженных частиц Больцман рассматривал частицы как твердые сферы с геометрическим радиусом a>0 (радиусом взаимодействия). Условие применимости кинетического описания посредством уравнения (1) для такой системы записывается в виде
где n>0 — плотность частиц. Это неравенство, соответствующее малости размера частиц a>0, т. е. радиуса их взаимодействия, по сравнению со средним расстоянием между частицами есть условие применимости газового приближения для системы нейтральных частиц. Оно означает, что частицы основное время находятся в свободном полете и лишь изредка сталкиваются. При этом, хотя потенциал взаимодействия и бесконечно велик, т. е. взаимодействие сильное, происходит такое взаимодействие редко.
Л. Д. Ландау при выводе уравнения (1) для газа из кулоновски взаимодействующих частиц условием типа (3) воспользоваться не мог, поскольку характерный радиус взаимодействия в этом случае «бесконечно» велик. Он воспользовался малостью средней потенциальной энергии взаимодействия частиц
Наиболее полная на сегодняшний день биография знаменитого генерального секретаря Коминтерна, деятеля болгарского и международного коммунистического и рабочего движения, национального лидера послевоенной Болгарии Георгия Димитрова (1882–1949). Для воссоздания жизненного пути героя автор использовал обширный корпус документальных источников, научных исследований и ранее недоступных архивных материалов, в том числе его не публиковавшийся на русском языке дневник (1933–1949). В биографии Димитрова оставили глубокий и драматичный отпечаток крупнейшие события и явления первой половины XX века — войны, революции, массовые народные движения, победа социализма в СССР, борьба с фашизмом, новаторские социальные проекты, раздел мира на сферы влияния.
В первой части книги «Дедюхино» рассказывается о жителях Никольщины, одного из районов исчезнувшего в середине XX века рабочего поселка. Адресована широкому кругу читателей.
Книга «Школа штурмующих небо» — это документальный очерк о пятидесятилетнем пути Ейского военного училища. Ее страницы прежде всего посвящены младшему поколению воинов-авиаторов и всем тем, кто любит небо. В ней рассказывается о том, как военные летные кадры совершенствуют свое мастерство, готовятся с достоинством и честью защищать любимую Родину, завоевания Великого Октября.
Автор книги Герой Советского Союза, заслуженный мастер спорта СССР Евгений Николаевич Андреев рассказывает о рабочих буднях испытателей парашютов. Вместе с автором читатель «совершит» немало разнообразных прыжков с парашютом, не раз окажется в сложных ситуациях.
Из этой книги вы узнаете о главных событиях из жизни К. Э. Циолковского, о его юности и начале научной работы, о его преподавании в школе.
Со времен Макиавелли образ политика в сознании общества ассоциируется с лицемерием, жестокостью и беспринципностью в борьбе за власть и ее сохранение. Пример Вацлава Гавела доказывает, что авторитетным политиком способен быть человек иного типа – интеллектуал, проповедующий нравственное сопротивление злу и «жизнь в правде». Писатель и драматург, Гавел стал лидером бескровной революции, последним президентом Чехословакии и первым независимой Чехии. Следуя формуле своего героя «Нет жизни вне истории и истории вне жизни», Иван Беляев написал биографию Гавела, каждое событие в жизни которого вплетено в культурный и политический контекст всего XX столетия.