Скорость мысли. Грандиозное путешествие сквозь мозг за 2,1 секунды - [41]

Шрифт
Интервал

Подобные исследования, с визуализацией при помощи красителей, постоянно демонстрируют наличие в коре головного мозга молчаливых нейронов, но оставляют открытыми множество вопросов. Возможно, есть какие-то технические проблемы с используемыми нами флуоресцентными веществами? Может, они не регистрируют отдельные импульсы и поэтому нейроны выглядят менее активными, чем на самом деле? Или флуоресцентные вещества усваиваются не всеми нейронами? Но в этом случае «безмолвными» нейронами могут быть только те, внутри которых нет флуоресцентной краски. Или краситель их повреждает? В этом случае возможен вариант, что само поступление внутрь клетки химического вещества заставляло нейроны прекращать генерировать импульсы. Стоит уточнить, что большинство исследований с визуализацией, включая все вышеперечисленные, позволяют видеть нейроны во втором и третьем слоях, как раз в верхней части коры, потому что свету труднее проникать в последующие слои и, следовательно, нам труднее снимать видео. Поэтому не исключено, что в именно в этих слоях коры есть что-то особенное, а более глубокие нейроны весело испускают импульсы, уносящиеся по аксонам прочь, но мы их просто не видим. Как и в любой другой области науки, каждая новая технология позволяет получать интереснейшие ответы, но ставит не меньше новых вопросов. Однако теперь, с помощью феноменально сложной техники локальной фиксации потенциала, ученые доказали, что молчаливые нейроны действительно существуют.

Традиционно нейробиологи просто опускали тонкие иголки из серебра, нержавеющей стали или стекла в мозг, размещали кончик этой иглы рядом с телом нейрона и записывали электрические всплески. Но при локальной фиксации потенциала методом пэтч-клэмп исследователи находят нейрон в мозгу животного при помощи стеклянной пипетки – трубки с конусообразным кончиком диаметром 1–2 микрона, пытаясь физически прикрепиться к его мембране, «присосаться» к ней. Экспериментаторы находят нейроны только путем физического контакта, поэтому не полагаются на его активность. У метода локальной фиксации есть свои недостатки: к большому нейрону легче присосаться, чем к маленькому, а при работе на живом животном до сих пор нет возможности видеть, что вы делаете, – но, что важно для нас, нейрону необязательно быть активным. После присоединения к клетке можно воспроизвести животному какой-нибудь звук или заставить его прикоснуться к чему-либо и посмотреть, станет ли нейрон с прикрепленным к нему электродом активным.

В большинстве случаев ответ – нет, не станет. Томаш Громадка из лаборатории Тони Задора в Колд-Спринг-Харбор прикрепил электроды к целому набору нейронов в первой части слуховой коры (A1) крысы и обнаружил, что у бодрствующих животных бóльшую часть времени большинство из них молчали [145]. Причем молчали независимо от того, сидело ли животное в тишине или прослушивало чрезвычайно скучную подборку неестественных чистых тонов из динамиков. Воспроизведение звуков вызывало очень слабую реакцию в той части коры головного мозга, которая больше всего реагирует на звук. Дэн О’Коннор, работавший тогда в лаборатории Карела Свободы на кампусе Джанелия, прикрепил электроды к нейронам в том отделе коры головного мозга, который демонстрировал активность, когда мышь использовала усы, чтобы найти столбик перед поилкой [146]. Угадаете, что он обнаружил? Большинство этих нейронов чаще всего молчали. Даже когда вибриссы активно двигались, ощупывая столбик. В других исследованиях экспериментаторы тоже неизменно обнаруживали множество молчащих нейронов во всех слоях коры головного мозга [147].

Теперь мы уже понимаем, что это молчание ни для кого не было секретом. Теоретики давно выяснили, сколько нейронов должно находиться в пределах радиуса регистрации электрода, опущенного в кору головного мозга грызуна. Простая физика говорит, что чем больше расстояние между электродом и нейроном, тем слабее будет сигнал. Мощность сигнала должна падать примерно экспоненциально – сначала быстро, затем медленно – с увеличением расстояния. И можно вычислить расстояние, за пределами которого сигнал станет слишком слабым, чтобы его можно было обнаружить с помощью вашего оборудования, потому что он будет неотличим от шума. Итак, теоретики вычислили, на каком расстоянии нельзя обнаружить импульсы на фоне шума, если разместить электрод среди совокупности нейронов, упакованных так же плотно, как в коре головного мозга, и подсчитали, сколько нейронов будет располагаться внутри этого радиуса. Ответ: минимум сто [148].

Но когда нейробиологи опускают один электрод в нужное положение, они видят в лучшем случае несколько импульсов от разных нейронов (мы можем определить, что они от разных нейронов, если регистрируемые импульсы постоянно имеют разную амплитуду). Ничего подобного активности сотни нейронов. Даже десятков. Отсюда последовал вывод: большинство нейронов молчат [149].

Ирония заключается в том, что наличие темных нейронов необходимо для того, чтобы вообще иметь возможность регистрировать активность в коре головного мозга. Если бы значительная часть из этой сотни нейронов посылала импульсы, десятки тысяч экспериментов не увенчались бы успехом, поскольку вход прибора был бы просто забит непрерывными колебаниями напряжения, на фоне которых отдельные импульсы от отдельных нейронов теряются. Не имея возможности различать активность отдельных нейронов, мы не смогли бы измерить ее, изучить, определить, на что они реагируют, а на что нет. Не было бы Нобелевской премии Хьюбела и Визеля в 1981 году за открытие простых и сложных клеток в зрительной зоне V1. Не открыли бы ни частотно-чувствительные клетки в слуховой коре, ни клетки определения местоположения в гиппокампе. Оказывается, нам нужно поблагодарить темные нейроны за возможность понимать процессы, происходящие в нервной ткани.


Рекомендуем почитать
Просто геном

Стоит ли нам манипулировать геномом нерожденных и менять генофонд homo sapiens, который нельзя будет перезапустить так, чтобы он развивался в обратную сторону? Готовы ли мы, как вид, взять на себя ответственность за собственную эволюцию и целенаправленно редактировать наши геномы? Как только мы полностью поймем генетические факторы, которые определяют здоровье и работоспособность человека, мы сможем выбрать или, возможно, даже спроектировать эмбрионов с генетическим составом, отличным от такового у их родителей.


Архитекторы интеллекта. Вся правда об искусственном интеллекте от его создателей

Искусственный интеллект (ИИ) быстро переходит из области научной фантастики в повседневную жизнь. Современные устройства распознают человеческую речь, способны отвечать на вопросы и выполнять машинный перевод. В самых разных областях, от управления беспилотным автомобилем до диагностирования рака, применяются алгоритмы распознавания объектов на базе ИИ, возможности которых превосходят человеческие. Крупные медиакомпании используют роботизированную журналистику, создающую из собранных данных статьи, подобные авторским.


Сказки

Настоящий сборник является первым научным изданием сказок Перро на русском языке, предназначенным для взрослых читателей: до сих пор эти сказки издавались только в качестве детских книжек. В сборник включены не только все сказки Перро, прозаические и стихотворные, но также и некоторые наиболее известные сказки его продолжателей и последователей (д’Онуа, Леритье-де-Впллодон, Лепренс де-Бомон) как образцы французской сказочной литературы XVII–XVIII веков; во французских изданиях эти сказки нередко объединяются со сказками самого Перро. Перевод под редакцией М. Петровского. Вступительная статья и комментарии Н. П. Андреева. Иллюстрации Александра Дмитриевича Силина..


Заболевания желудка. Современный взгляд на лечение и профилактику

«Все сознают, что нормальная и полезная еда есть еда с аппетитом, всякая другая еда, еда по приказу, по расчету признается уже в большей или меньшей степени злом», — писал академик И. П. Павлов. Перед вами необычная книга. Главная ее особенность состоит в том, что желудок, его заболевания, а также их профилактика и лечение рассматриваются в «контексте» всего организма, в тесной связи с образом жизни и мыслями человека. Автор обращает внимание читателей на множество «мелочей», которым мы обычно не придаем никакого значения, не замечаем их влияния на состояние желудочно-кишечного тракта и здоровье в целом. Книга — не сухое повествование о болезнях, а увлекательное путешествие в мир под названием «человеческий организм». Для широкого круга читателей.


Антикитерский механизм: Самое загадочное изобретение Античности

Это уникальное устройство перевернуло наши представления об античном мире. Однако история Антикитерского механизма, названного так в честь греческого острова Антикитера, у берегов которого со дна моря были подняты его обломки, полна темных пятен. Многие десятилетия он хранился в Национальном археологическом музее Греции, не привлекая к себе особого внимания.В научном мире о его существовании знали, но даже ученые не могли поверить, что это не мистификация, и поразительный механизм, использовавшийся для расчета движения небесных тел, действительно дошел до нас из глубины веков.


Возвращение к языку. Наглый самоучитель райтера, журналиста и писателя

Пособие призвано развить в школьниках, студентах и начинающих журналистах умение создавать красивые, яркие и точные образы, оставаясь в рамках существующего русского языка, не вульгаризируя его англицизмами, жаргонными словами и разговорной речью низкого уровня. Задача, поставленная автором, довольно амбициозна: не только научить правильной письменной речи, но пробудить вдохновение к созданию таких текстов и дальнейшему совершенствованию. Адресована студентам факультетов журналистики и филологических факультетов, а также тем, кто стремится грамотно и образно излагать свои мысли на бумаге.