Система электропитания активных фазированных антенных решеток - [3]

Шрифт
Интервал

I>+10=I>СРn=0,28·29 = 8,12А; Р>+10 =10·8,12=81,2 Вт.

Потребление по каналу +5 В:

I>+5=I>1n=0,2·29 = 5,8А; Р>+5 =5·5,8=29 Вт.

Потребление по каналу –5 В:

I>-5=I>2n=0,08·29 = 2,32А; Р>-5 =5·2,32=11,6 Вт.


Таблица 1. Типономиналы модулей ЗАО «Электронинвест»

Серийные источники типа СПНВыходная мощность, ВтРяд выходных напряжений, ВМасса, кгГабаритные размеры, мм
СПН0335; 6; 9; 12; 150,04250×32×12
СПН0552,5; 3,3; 5; 6; 9; 12; 15; 270,05258×34x12
СПН10102,5; 3,3; 5; 6; 9; 12; 15; 27; 360,06464×40×12
СПН15152,5; 3,3; 5; 6; 9; 12; 15; 27; 360,08671×44x×14
СПН25253,3; 5; 6; 9; 12; 15; 27; 360,16089×54×16
СПН50505; 6; 9; 12; 15; 27; 360,21098×61×16
СПН10100360,280122×84×1

Для такой системы можно выбрать серийные источники типа СПН, выпускаемые предприятием «Электронинвест»:

• для канала +10 В — СПН100 10- В-1 КЦАЯ.436434.001 ТУ;

• для канала +5 В — СПН50 05-В-1 КЦАЯ.436434.001 ТУ;

• для канала -5 В — СПН 15 05- В-1 КЦАЯ.436434.001 ТУ.

С учетом данных, приведенных в табл. 1, общая масса всех источников составит 10,4 кг без учета массы накопителей энергии, установленных в ППМ. Структурная схема такой системы электропитания приведена на рис. 1.

Рис. 1. Схема централизованной системы питания полотна антенной решетки и распределительной системы


Оценим надежность системы. Вероятность безотказной работы одного источника типа СПН:

p = e>–λte>–λ>ХРt>ХР = e>-1·10-6·3000e>-11,6·10-8·40000 = 0,992

В данной системе отказ наступает при выходе из строя любого из источников. Общее число источников k=3×n=54. Вероятность безотказной работы централизованной системы питания

P>ЦС =p>k=0,992>54 =0,648.

Полученное значение вероятности безотказной работы системы питания является крайне низким. Резервирование источников питания в данной системе практически не представляется возможным по следующим причинам.

При резервировании здесь требуется коммутировать выходные цепи источников питания. Производить данную коммутацию с помощью электромеханического реле невозможно из-за низкой надежности таких реле Применение развязывающих диодов также невозможно, поскольку при низких выходных напряжениях, имеющих место в данном случае, нельзя обеспечить требуемые значения величины и нестабильности выходных напряжений источников питания.

Рис. 2. Схема децентрализованной системы питания полота антенной решетки и распределительной системы


Для сравнения параметров этой схемы электропитания с другими вариантами примем надежность узла коммутации (УК) равной единице. Тогда надежность централизованной системы электропитания с резервированием будет P>ЦСрез= 0,996.

Приняв массу узла коммутации равной 0,15 кг, получим массу такой системы, равной 28,9 кг.

Оценим децентрализованную систему (ДС) электропитания. При таком построении системы электропитание каждого ППМ осуществляется от своих маломощных источников питания, которые в свою очередь питаются непосредственно от бортсети. В данной системе отсутствует централизованная часть системы питания, соответственно ее надежность при сравнительном анализе равна единице.

Исходя из требований к питающим напряжениям ППМ, в качестве источников питания здесь можно использовать три преобразователя СПН:

• для канала +10 В — СПН 03 10- В-1 КЦАЯ.436434.001 ТУ;

• для канала +5 В — СПН 03 05- В-1 КЦАЯ.436434.001 ТУ;

• для канала -5 В — СПН 03 05- В-1 КЦАЯ.436434.001 ТУ.

Суммарная масса источников питания в этом случае будет

M = N×3x0,042 = 64,76 кг.

Структурная схема такой системы электропитания приведена на рис. 2.

Таким образом масса системы питания при децентрализованной схеме составит 64,8 кг без учета массы накопителей энергии, установленных в ППМ.

Рассмотрим систему электропитания с частичной централизацией (ЧЦ). При таком построении системы питание ППМ можно осуществить несколькими способами.

Рассмотрим вариант (первый способ), когда дополнительные напряжения +5 и -5 В формируются от источников, питающихся от цепи основного канала +10 В. При таком построении в источниках +5 и -5 В не требуется гальванической развязки входных и выходных цепей и они могут быть выполнены на основе импульсных стабилизаторов, имеющих существенно меньшую массу и больший КПД по сравнению с СПН, так как их схема управления более простая и в них отсутствует трансформатор. Предварительные расчеты показали, что плата ИСН с двумя выходными напряжениями +5 и -5 В при ее размещении внутри ППМ будет иметь массу 0,025 кг и габаритные размеры 50×35×10 мм. КПД такого ИСН составит не менее 80%. Тепловыделение этой платы не будет превышать 0,35 Вт. В этом случае ППМ питается только от напряжения +10 В с током потребления I>+10 = 0,28+0,175 = 0,455 А и потребляемой мощностью 4,55 Вт.

При втором способе построения схемы с частичной централизацией при котором вспомогательные напряжения +5 и –5 В для каждого ППМ вырабатываются импульсным стабилизатором напряжения, расположенным в корпусе ППМ, а напряжение +10 В осуществляется мощным СПН, обеспечивающим питание всего столбца. Из расчетов, проведенных выше имеем мощность, потребляемую одним ППМ, равную 4,55 Вт. Тогда мощность СПН составит 4,55×29= 132 Вт.

Серийно СПН на данную мощность не выпускаются, поэтому такой источник должен специально разрабатываться.


Рекомендуем почитать
Профессия "Технический писатель", или "Рыцари клавиатуры"

В книге подробно рассматриваются основные аспекты работы специалиста по техническим текстам — от первых шагов и введения в профессию «технический писатель» до обзора применяемого программного обеспечения и организационных вопросов трудоустройства, включая взаимодействие с зарубежными заказчиками. Также описываются современные тенденции и изменения в профессии. Адресуется тем, кто уже работает «техписом» или ещё только собирается овладеть этой специальностью.


История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости.


Юный техник, 2015 № 04

Популярный детский и юношеский журнал.


Юный техник, 2015 № 03

Популярный детский и юношеский журнал.


Юный техник, 2014 № 02

Популярный детский и юношеский журнал.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.