Симуляция частичной специализации - [2]

Шрифт
Интервал

>TrueType ptr_discriminator(PointerShim);

>FalseType ptr_discriminator(…);


>// IsPointer‹T›::value == true, если T является указателем,

>// IsPointer‹T›::value == false в противном случае.

>template‹class T›

>class >IsPointer {

>private:

> static T t_;

>public:

> enum {

> value = sizeof(ptr_discriminator(t_)) == sizeof(TrueType)};

>};


>// Так как объект типа void создан быть не может,

>// случай IsPointer‹void› должен обрабатываться отдельно.

>template‹›

>class IsPointer‹void› {

>public:

> enum {value = false};

>};

ПРЕДУПРЕЖДЕНИЕ Строго говоря, необходимо предоставлять не только специализацию для void, но и для соответствующих cv-квалифицированных разновидностей: const void, volatile void, const volatile void. Эти специализации опущены для краткости изложения.

ПРИМЕЧАНИЕ Функции, подобные ptr_discriminator, иногда называют дискриминирующими.

Техника основана на том, что во время компиляции выражения sizeof(ptr_discriminator(t_)) компилятор вынужден выбрать из двух перегруженных функций ptr_discriminator наиболее подходящую. В случае, если IsPointer‹T›::t_ является указателем, будет выбрана функция ptr_discriminator(PointerShim), возвращающая значение типа TrueType, и значение IsPointer‹T›::value обращается в true, т.к. sizeof(ptr_discriminator(PointerShim)) – sizeof(TrueType); в противном случае подходящей является функция ptr_discriminator(…)и значением IsPointer‹T›::value является false, т.к. sizeof(ptr_discriminator(…)) – sizeof(FalseType), а типы TrueType и FalseType выбраны таким образом, что sizeof(TrueType)!= sizeof(FalseType).

Класс PointerShim необходим для того, чтобы классы, имеющие операцию приведения к указателю, не считались указателями. На первый взгляд может показаться, что можно «упростить» дискриминирующие функции ptr_discriminator, избавившись от промежуточного класса PointerShim:

>TrueType simple_ptr_discriminator(const volatile void*);

>FalseType simple_ptr_discriminator(…);

Однако, в этом случае, метафункция IsPointer будет работать неверно, например, для таких классов:

>struct C {

> operator int*() const {return 0;}

>};

Так как класс C имеет операцию приведения к указателю, функция simple_ptr_discriminator может быть вызвана с любым объектом этого класса, и, следовательно, метафункция, построенная с использованием simple_ptr_discriminator, будет ошибочно определять подобные классы как указатели.

Пример. Для пущей ясности можно рассмотреть, как работает метафункция IsPointer‹T› на примере типа int. IsPointer‹int› разворачивается компилятором примерно в следующее:

>// псевдокод

>class IsPointer‹int› {

>private:

> static int t_;

>public:

> enum {value = sizeof(ptr_discriminator(t_)) == sizeof(TrueType)};

>};

ptr_discriminator(PointerShim) для t_ не подходит, т.к. объект PointerShim может быть создан только из указателя. Следовательно, подходящей будет оставшаяся ptr_discriminator(…), которая возвращает FalseType. Значит, в данном случае выражение sizeof(ptr_discriminator(t_)) эквивалентно выражению sizeof(FalseType), значение которого по условию не равно sizeof(TrueType). Следовательно, IsPointer‹int›::value == false.

Симуляция частичной специализации по виду аргумента шаблона

Использовать полученную метафункцию IsPointer‹T› для симуляции частичной специализации по виду аргумента шаблона можно примерно следующим образом:

>// Реализация общего случая: T не является указателем.

>template‹class T›

>class C_ {

> //…

>};


>// Реализация случая, когда T является указателем.

>template‹class T›

>class C_ptr_ {

> //…

>};


>// Traits для случая, когда T является указателем

>template‹bool T_is_ptr›

>struct CTraits {

> template‹class T›

> struct Args {

>  typedef C_ptr_‹T› Base;

> };

>};


>// Traits для случая, когда T не является указателем.

>template‹›

>struct CTraits‹false› {

> template‹class T› struct Args {

>  typedef C_‹T› Base;

> };

>};


>// Класс, предназначенный для использования клиентами.

>template‹class T›

>class C: public CTraits‹IsPointer‹T›::value›::template Args‹T›::Base {

> //…

>};

Ограничения

Приведенная техника симуляции частичной специализации обладает некоторыми ограничениями по сравнению с «настоящей» частичной специализацией шаблонов классов.

Одним из наиболее заметных ограничений является то, что дискриминирующие функции, применяющиеся при создании многих метафункций, требуют объявления переменной, поэтому не работают с абстрактными классами. Например, в случае с IsPointer‹T› объявляется статическая переменная t_. Несмотря на то, что ее определение не требуется, специализация шаблона IsPointer‹T› абстрактным классом приведет к ошибке компиляции. По этой же причине приходится предоставлять специализации шаблонов метафункций для void.

Другим ограничением является то, что некоторые метафункции, построенные с использованием дискриминирующих функций, например, IsConst‹T›, IsVolatile‹T›, IsReference‹T› и т.п., некорректно работают в случае, если T имеет квалификаторы и const и volatile одновременно (например, const volatile int&). Существующая реализация метафункций IsConst‹T› и IsVolatile‹T› без «настоящей» частичной специализации сводится к использованию соответствующих дискриминирующих функций:


Рекомендуем почитать
Изучаем Java EE 7

Java Enterprise Edition (Java EE) остается одной из ведущих технологий и платформ на основе Java. Данная книга представляет собой логичное пошаговое руководство, в котором подробно описаны многие спецификации и эталонные реализации Java EE 7. Работа с ними продемонстрирована на практических примерах. В этом фундаментальном издании также используется новейшая версия инструмента GlassFish, предназначенного для развертывания и администрирования примеров кода. Книга написана ведущим специалистом по обработке запросов на спецификацию Java EE, членом наблюдательного совета организации Java Community Process (JCP)


Геймдизайн. Рецепты успеха лучших компьютерных игр от Super Mario и Doom до Assassin’s Creed и дальше

Что такое ГЕЙМДИЗАЙН? Это не код, графика или звук. Это не создание персонажей или раскрашивание игрового поля. Геймдизайн – это симулятор мечты, набор правил, благодаря которым игра оживает. Как создать игру, которую полюбят, от которой не смогут оторваться? Знаменитый геймдизайнер Тайнан Сильвестр на примере кейсов из самых популярных игр рассказывает как объединить эмоции и впечатления, игровую механику и мотивацию игроков. Познакомитесь с принципами дизайна, которыми пользуются ведущие студии мира! Создайте игровую механику, вызывающую эмоции и обеспечивающую разнообразие.


Обработка событий в С++

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Обработка баз данных на Visual Basic.NET

Это практическое руководство разработчика программного обеспечения на Visual Basic .NET и ADO.NET, предназначенное для создания приложений баз данных на основе WinForms, Web-форм и Web-служб. В книге описываются практические способы решения задач доступа к данным, с которыми сталкиваются разработчики на Visual Basic .NET в своей повседневной деятельности. Книга начинается с основных сведений о создании баз данных, использовании языка структурированных запросов SQL и системы управления базами данных Microsoft SQL Server 2000.


MFC и OpenGL

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Питон — модули, пакеты, классы, экземпляры

Python - объектно-ориентированный язык сверхвысокого уровня. Python, в отличии от Java, не требует исключительно объектной ориентированности, но классы в Python так просто изучить и так удобно использовать, что даже новые и неискушенные пользователи быстро переходят на ОО-подход.