Штурм абсолютного нуля - [2]
В 1742 году шведский астроном и физик Андерс Цельсий предложил шкалу термометра, в которой интервал между точкой таяния льда и точкой кипения воды был разбит на 100 равных частей, каждая из которых получила название «градус Цельсия», обозначаемый так: °С (по первой букве фамилии ученого Celsius). Точка таяния льда была принята за 0 °C, а точка кипения воды за 100 °C.
Эта шкала находит широкое применение в СССР и многих других странах.
Как перейти от температуры в градусах по шкале Фаренгейта к температуре в градусах по шкале Цельсия?
Расстояние между точкой таяния льда и точкой кипения воды на шкале Фаренгейта составляет 212—32= 180 градусов, а на шкале Цельсия только 100 градусов. Следовательно, один градус Фаренгейта равнозначен 5/9 градусам Цельсия. Кроме того, точка таяния льда на шкале Фаренгейта сдви — нута вверх на 32 градуса по сравнению со шкалой Цельсия.
Отсюда легко можно вывести формулу перевода градусов Фаренгейта в градусы Цельсия: t°С = 5/9 (n°F — 32), где введены следующие обозначения: t°С — температура в градусах по шкале Цельсия; n°Р — температура в градусах по шкале Фаренгейта.
А теперь мы предлагаем читателю определить, какую ошибку допустил Фаренгейт при разработке своей шкалы. Напомним, что Фаренгейт принял за нормальную температуру человеческого тела 100°F.
Подставив эту величину в приведенную выше формулу, мы обнаружим, что она соответствует 37,8 °C.
Но ведь с такой температурой врач немедленно отправит вас в постель!
В действительности нормальная температура человеческого тела не 100°F, а примерно 98°F.
Наличие двух разных температурных шкал создает определенные неудобства, особенно в наш век, когда контакты между людьми разных стран и континентов становятся все более тесными.
Однажды в гостинице одного из городов Европы остановился американский промышленник. Назовем его мистер Смит.
По приезде мистер Смит (он был человек предусмотрительный) вынул из чемодана взятый из дому привычный для него термометр Фаренгейта.
Однако в спешке (прибыло еще много других гостей) горничная перепутала и установила термометр Фаренгейта за окном соседнего номера, где остановился турист из Парижа — месье Поль, а в номере американца остался числящийся по описи гостиницы термометр Цельсия.
Вот что из этого вышло.
Представьте себе утро погожего дня ранней весны. Хотя столбик термометра еще стоит на нуле по Цельсию, под солнечными лучами уже начинает подтаивать. На выходе из гостиницы остановились двое.
Один из них — обливающийся потом американец, облаченный в тяжелую шубу. Он закутал свое лицо так, что виднеется только кончик носа. Рядом подпрыгивает, стуча от холода зубами, француз. Он оделся так, будто в знойный день собрался на пляж.
Этому предшествовали следующие события.
Проснувшись, мистер Смит первым делом взглянул на термометр (он был уверен, что это термометр Фаренгейта, а на самом деле это был, как мы уже знаем, термометр Цельсия).
«Брр, какой ужасный мороз», — подумал американец: столбик термометра стоял на отметке 0° (используя приведенную выше формулу, легко подсчитать, что 0° по Фаренгейту соответствует минус 18° по Цельсию).
Естественно, мистер Смит экипировался соответствующим образом.
В то же самое время месье Поль, который не подозревал, что за окном его номера установлен термометр Фаренгейта, воскликнул:
— Какая тропическая жара, черт побери!
Термометр показывал плюс 32 градуса.
Разумеется, подобные казусы в обыденной жизни бывают не так уж часто. Однако отсутствие объективной температурной шкалы создавало немалые трудности при проведении исследований, связанных с измерением температуры.
Французский химик и физик Жозеф Гей — Люссак в 1802 году обнаружил интересную зависимость. Оказалось, что объем данной массы газа при постоянном давлении изменяется прямо пропорционально изменению температуры. При этом каждый раз при изменении температуры газа на 1 °C объем газа изменяется на одну и ту же величину независимо от природы газа, а именно на 1/273 его объема при 0 °C.
Так в физику вошел закон Гей — Люссака.
Этот закон позволил сделать интересные выводы.
Представьте себе следующий воображаемый опыт. Вы имеете некоторый объем газа, находящегося под постоянным давлением, и охлаждаете его начиная от 0 °C.
При охлаждении ка 1 °C объем газа уменьшается на 1/273 часть его первоначального объема. Вы охлаждаете газ еще на 1 °C, и уменьшение его объема составляет уже 2/273 части первоначального объема, и т. п. Наконец, при охлаждении на 273 °C… Но стоп! Мы слишком увлеклись. Ведь при охлаждении на 273 °C объем газа вообще должен был исчезнуть.
Значит, — 273 °C является наименьшей температурой, к которой можно подойти сколь угодно близко, но никогда нельзя достичь. Следовательно, естественно выбрать за исходную точку температуры, то есть за абсолютный нуль температуры, именно —273 °C.
Так возникла идея шкалы абсолютной температуры.
Но следует заметить, что при достаточно низкой температуре газ начинает сжижаться и закон Гей-Люссака не применим. В этом смысле наш воображаемый опыт не вполне корректен.
Более строгое доказательство того, что ни одно тело не может быть охлаждено ниже абсолютного нуля, основанное на втором законе термодинамики, принадлежит английскому физику Уильяму Томсону (лорду Кельвину), который в 1848 году ввел в науку понятие об абсолютной температуре и абсолютную шкалу температур.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.