Шаг за шагом. Транзисторы - [29]
В этом описании, правда, остается еще одна маленькая неясность. Еще нужно доказать, что сигнал на выходе транзистора будет не просто копией входного сигнала, а его мощной копией. Нужно доказать, что произойдет не простое копирование сигнала, а именно его усиление.
Нас, конечно, не устроит доказательство от противного: если бы транзисторы не усиливали, то кто бы стал их делать! Мы попробуем проверить усилительные способности транзистора путем рассуждений и расчетов, а также с помощью простейших экспериментов.
Прежде всего внесем поправку в простейшую модель транзистора, где три зоны полупроводникового триода отображались тремя сложенными вместе спичечными коробками (рис. 30). Выбросим среднюю коробку и вместо нее вставим пластинку тонкого картона. Теперь наша модель больше похожа на настоящий транзистор, так как базу действительно делают очень тонкой — ее толщина составляет несколько микрон или в крайнем случае несколько десятков микрон. База должна быть тонкой для того, чтобы попавшие в нее из эмиттера заряды (в нашем примере дырки), не обращая внимания на призвавший их сюда «минус» батареи Б>э, могли легко добраться к коллекторному переходу под действием сил диффузии.
И действительно, если база будет тонкой, то силам диффузии не составит никакого труда протолкнуть заряды сквозь нее в область коллекторного pn-перехода. А это, собственно говоря, нам только и нужно, потому что всякий заряд, достигший коллекторного перехода, в итоге будет участвовать в создании мощной копии сигнала, а заряды, которые пойдут по своему законному пути, из базы уйдут на «минус» эмиттерной батареи. Эти заряды, по сути дела, для нас потеряны.
Если вести строгий учет всем зарядам, то эмиттерный ток I>э, после того как он войдет в базу, нужно будет разделить на две слагающие. Одну из них назовем коллекторным током I>к — его образуют заряды, которые за счет диффузии доберутся до коллекторного перехода и в дальнейшем пойдут по коллекторной цепи. Другую составляющую — базовый ток I>б — создают заряды, сумевшие протиснуться по тонкой базе и пойти своим законным путем к «минусу» батареи. Теперь события, происходящие в нашем транзисторе, можно описать так:
I>э= I>к + I>б
Точно так же связаны между собой и изменения всех трех токов. Если, например, подняв напряжение E>эб, увеличить в два раза эмиттерный ток I>э, то одновременно в два раза возрастут и оба порождаемые им тока I>к и I>б. При этом сумма I>к + I>б опять-таки останется равной I>э. Да иначе и быть не может: ведь эмиттерный ток распределяется только между этими двумя слагающими.
В дальнейшем нас будут интересовать не только токи, напряжения и сопротивления, но и изменения этих величин. Поэтому давайте сразу же договоримся о том, как сокращенно записывать само слово «изменение». Очень малые изменения той или иной величины принято обозначать греческой буквой Δ («дельта»), и, пользуясь этим, все, что мы только что сказали о взаимной связи между изменениями токов в транзисторе, можно записать так:
Δ I>э= ΔI>к + ΔI>б
В переводе на русский наша запись может звучать так: «Изменение эмиттерного тока равно сумме соответствующих изменений коллекторного тока и тока базы».
Для подопытной схемы, которую мы сейчас разбираем (рис. 35), введен особый показатель использования поступивших из эмиттера зарядов. Он называется коэффициентом усиления по току, обозначается греческой буквой α и численно равен:
α = ΔI>к:ΔI>э
Коэффициент α показывает, какая часть эмиттерного тока достается коллекторному току. Смысл этого коэффициента проще всего уяснить на числовом примере: если при изменении тока эмиттера на 10 миллиампер, ток коллектора увеличится на 8 миллиампер, то α = 8:10 = 0,8. А это значит, что заряды, поставляемые эмиттером в базу, на 80 % используются для создания нужного нам коллекторного тока. Насколько же реальна такая цифра?
Рис. 35.Коэффициент усиления по току α показывает, какая часть вышедших из эмиттера зарядов участвует в создании коллекторного тока.
Уменьшая толщину базы и принимая ряд других мер в современных транзисторах, удается довести коэффициент α в среднем до 0,95—0,99. Это значит, что коллекторный ток (строго говоря, речь идет об изменениях тока, то есть ΔI>э, ΔI>к, ΔI>б) составляет 95–99 % эмиттерного тока I>эи лишь 1–5 % приходится на базовый ток. Иными словами, из каждой сотни зарядов, попавших в базу из эмиттера, лишь 1–5 уходят на «минус» батареи Б>э и через нее возвращаются в эмиттер, так ничего полезного и не сделав. Зато остальные 95–99 зарядов из ста добираются до коллекторного перехода, меняют его сопротивление, создают в коллекторной цепи постоянный ток, из которого в итоге и образуется мощная копия усиленного сигнала.
Выяснив все это, подключим к нашему транзистору, кроме источников питания, еще два элемента: источник усиливаемого сигнала и резистор R>н — нагрузку, на которой должен выделяться усиленный сигнал. Естественно, что усиливаемый сигнал вводится в эмиттерную цепь, а усиленный извлекается из коллекторной (рис. 36).
В книге весьма подробно и в то же время очень доступно рассказано об электричестве и его использовании в энергетике и связи. Используя 400 специально разработанных иллюстраций, автор рассказывает об истории изучения электричества, о сложившихся основных системах постоянного и переменного тока и о той важной роли, которая досталась электричеству в энергетике нашего мира. Рудольф Анатольевич Сворень — автор многих популярных книг о физике и электронике, известный научный журналист, радиоинженер и кандидат педагогических наук, много лет проработавший в редакции журнала “Наука и жизнь” заместителем главного редактора.
Книга «Ваш радиоприемник» — удачный пример того, как можно просто, занимательно и в то же время достаточно конкретно рассказать о радиоэлектронной технике. Эта книга будет полезной не только для тех, кто хочет поближе познакомиться со своим приемником, но в первую очередь для тех, кто испытывает потребность познакомиться с основами современной радиоэлектроники.
В этой книге рассказано о ламповых усилителях низкой частоты, громкоговорителях и их акустическом оформлении, о некоторых путях улучшения качества звучания радиоаппаратуры. Рассказ об основах радиоэлектроники и принципах усиления иллюстрируется схемами и описаниями радиолюбительских конструкций: радиограммофонов, высококачественных усилителей, простого школьного радиоузла, акустических агрегатов.
Эта книга для тех, кто хочет стать радиолюбителем-конструктором и строить замечательные электронные приборы — приемники, усилители, радиостанции, магнитофоны. Начиная с простейшего детекторного приемника, постепенно, шаг за шагом, читатель познакомится с принципом работы, схемами и устройством различных самодельных приемников, включая многоламповые супергетеродины.В книге коротко изложены элементы электротехники, которые нужно знать радиолюбителю, описана работа основных радиотехнических деталей — электронных ламп, полупроводниковых приборов, трансформаторов, колебательных контуров, а также приводятся справочные данные, необходимые радиолюбителю для самостоятельной работы.
В книге интересно и увлекательно автор рассказывает об актуальных исследованиях в некоторых областях физики, астрономии, космонавтики, электроники и знакомит учащихся с новейшими достижениями и проблемами науки.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.