Шаг за шагом. Транзисторы - [107]

Шрифт
Интервал

Уделив так много внимания принципу супергетеродинного приема, мы сейчас совершим резкий поворот и оставим в стороне практические схемы транзисторных супергетеродинов.

Во-первых, постройка такого приемника связана со многими трудными для любителя операциями, в частности — с настройкой большого числа контуров. Во-вторых, каждый желающий построить транзисторный супергетеродин сможет воспользоваться одним из многих его подробных описаний, имеющихся в радиолюбительских брошюрах и журналах. И, наконец, третье. Совсем не обязательно строить приемник для того, чтобы на практике посмотреть, как осуществляется преобразование частоты. Понаблюдать за этим интересным процессом можно и в каком-нибудь другом электронном приборе, например в металлоискателе или электромузыкальном инструменте — терменвоксе.

Этот инструмент получил свое название по имени изобретателя — советского радиоинженера Льва Термена. Он построил терменвокс еще лет пятьдесят назад, и с тех пор этот родоначальник электронной музыки обошел весь мир. Лев Термен демонстрировал терменвокс Ленину, и, как рассказывают очевидцы этой демонстрации, Владимир Ильич проявил большой интерес к одному из первенцев электроники.

Принцип действия терменвокса поясняет рис. 120.



Рис. 120.В терменвоксе и металлоискателе используется изменение разностной частоты при расстройстве одного из генераторов.


Основа этого музыкального инструмента — два высокочастотных генератора и преобразователь частоты. Частоты генераторов f>1 и f>2выбираются таким образом, чтобы разностная частота f>разнлежала в звуковом диапазоне. Так, например, если f>1 = 100 кгц, а f>2 = 101 кгц, то разностная частота как раз и составит 1 кгц, то есть попадет в область звуковых частот.

В дальнейшем электрические колебания разностной частоты усиливаются и превращаются в звук с помощью громкоговорителя. Один из генераторов терменвокса всегда дает постоянную частоту, а частоту второго генератора можно в небольших пределах менять. При этом меняется и разностная частота, то есть меняется высота звука. А именно это прежде всего и требуется от музыкального инструмента.

Необходимое изменение частоты одного из генераторов терменвокса осуществляется следующим образом. К контуру этого генератора подключают металлический штырь и приближают к нему руку. При этом создается некий конденсатор, одной обкладкой которого является штырь, а второй — рука. В контур вносится дополнительная емкость С>вн, которая зависит от расстояния между рукой и штырем. Перемещая руку относительно штыря, мы меняем емкость контура, а значит, и частоту генератора. Вместе с ней меняется разностная частота, меняется высота звука.

Практическая схема простого транзисторного терменвокса приведена на рис. 112.



Рис. 112. Схема электрическая принципиальная терменвокса.


Генератор фиксированной частоты (Т>1) собран по трехточечной схеме с емкостной обратной связью. В колебательный контур входят не только катушка L>1 и конденсатор С>3, но еще и емкостный делитель С>4С>5, подключенный параллельно контуру (один конец делителя соединен с контуром непосредственно, а второй — через «землю» и конденсатор С>1). Транзистор подключен к контуру так, чтобы выполнялось условие фаз: эмиттер соединен со средней точкой емкостного делителя, а к крайним точкам контура присоединены коллектор (непосредственно) и база (через конденсатор С>2). Остальные элементы генератора нам известны по предыдущим схемам — это резисторы термостабилизации и развязывающий фильтр.

Точно по такой же схеме собран и второй генератор (Т>2), частота которого должна меняться. Связь контурной катушки со штырем осуществляется с помощью катушки связи L>3.

Следующий каскад — усилитель высокой частоты, на который с обоих генераторов (с эмиттеров Т>1Т>2) подаются два высокочастотных напряжения с частотами f>1 и f>2. Генераторы соединены с входом усилителя ВЧ (Т>3) через RС-цепочки (R>19C>12 и R>10C>11), которые ослабляют взаимное влияние генераторов, препятствуют «затягиванию» частоты. Это явление состоит в том, что при небольшой разности между частотами f>1 и f>2 один генератор «навязывает» свою частоту другому, и в итоге оба они дают одну и ту же частоту. При этом разностная частота становится равной нулю, то есть звук просто исчезает. «Затягивание» препятствует приближению частоты f>2 к частоте f>1, то есть препятствует получению достаточно низких звуков (50–80 гц). Чтобы предотвратить «затягивание», для каждого генератора часто делают собственный, так называемый буферный, усилитель ВЧ и уже с этих усилителей подают сигналы на детектор.

В данной схеме оба сигнала с общего усилителя ВЧ также подаются на триодный детектор (Т>4), где в результате одновременного искажения этих сигналов и появляется разностная частота f>разн = f>2 — f>1. Детектор терменвокса называют так потому, что он работает с отсечкой тока во входной цепи. Отрицательное смещение, поступающее через R>15, почти полностью компенсируется положительным смещением, возникающим на Rn, и таким образом каскад оказывается почти без смещения. Однако этот явный детектор все же правильнее было бы назвать преобразователем частоты, так как именно этот процесс лежит в основе получения звука.


Еще от автора Рудольф Анатольевич Сворень
Электричество шаг за шагом

В книге весьма подробно и в то же время очень доступно рассказано об электричестве и его использовании в энергетике и связи. Используя 400 специально разработанных иллюстраций, автор рассказывает об истории изучения электричества, о сложившихся основных системах постоянного и переменного тока и о той важной роли, которая досталась электричеству в энергетике нашего мира. Рудольф Анатольевич Сворень — автор многих популярных книг о физике и электронике, известный научный журналист, радиоинженер и кандидат педагогических наук, много лет проработавший в редакции журнала “Наука и жизнь” заместителем главного редактора.


Ваш радиоприемник

Книга «Ваш радиоприемник» — удачный пример того, как можно просто, занимательно и в то же время достаточно конкретно рассказать о радиоэлектронной технике. Эта книга будет полезной не только для тех, кто хочет поближе познакомиться со своим приемником, но в первую очередь для тех, кто испытывает потребность познакомиться с основами современной радиоэлектроники.


Шаг за шагом. Усилители и радиоузлы

В этой книге рассказано о ламповых усилителях низкой частоты, громкоговорителях и их акустическом оформлении, о некоторых путях улучшения качества звучания радиоаппаратуры. Рассказ об основах радиоэлектроники и принципах усиления иллюстрируется схемами и описаниями радиолюбительских конструкций: радиограммофонов, высококачественных усилителей, простого школьного радиоузла, акустических агрегатов.


Шаг за шагом. От детекторного приемника до супергетеродина

Эта книга для тех, кто хочет стать радиолюбителем-конструктором и строить замечательные электронные приборы — приемники, усилители, радиостанции, магнитофоны. Начиная с простейшего детекторного приемника, постепенно, шаг за шагом, читатель познакомится с принципом работы, схемами и устройством различных самодельных приемников, включая многоламповые супергетеродины.В книге коротко изложены элементы электротехники, которые нужно знать радиолюбителю, описана работа основных радиотехнических деталей — электронных ламп, полупроводниковых приборов, трансформаторов, колебательных контуров, а также приводятся справочные данные, необходимые радиолюбителю для самостоятельной работы.


В просторы космоса, в глубины атома [Пособие для учащихся]

В книге интересно и увлекательно автор рассказывает об актуальных исследованиях в некоторых областях физики, астрономии, космонавтики, электроники и знакомит учащихся с новейшими достижениями и проблемами науки.


Рекомендуем почитать
Динозавры. 150 000 000 лет господства на Земле

Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Популярная физика. От архимедова рычага до квантовой механики

Эта книга состоит из трех частей и охватывает период истории физики от Древней Греции и до середины XX века. В последней части Азимов подробно освещает основное событие в XX столетии  —  открытие бесконечно малых частиц и волн, предлагает оригинальный взгляд на взаимодействие технического прогресса и общества в целом. Книга расширяет представления о науке, помогает понять и полюбить физику.


Отпечатки жизни. 25 шагов эволюции и вся история планеты

Автор множества бестселлеров палеонтолог Дональд Протеро превратил научное описание двадцати пяти знаменитых прекрасно сохранившихся окаменелостей в увлекательную историю развития жизни на Земле. Двадцать пять окаменелостей, о которых идет речь в этой книге, демонстрируют жизнь во всем эволюционном великолепии, показывая, как один вид превращается в другой. Мы видим все многообразие вымерших растений и животных — от микроскопических до гигантских размеров. Мы расскажем вам о фантастических сухопутных и морских существах, которые не имеют аналогов в современной природе: первые трилобиты, гигантские акулы, огромные морские рептилии и пернатые динозавры, первые птицы, ходячие киты, гигантские безрогие носороги и австралопитек «Люси».


Страх физики. Сферический конь в вакууме

Легендарная книга Лоуренса Краусса переведена на 12 языков мира и написана для людей, мало или совсем не знакомых с физикой, чтобы они смогли победить свой страх перед этой наукой. «Страх физики» — живой, непосредственный, непочтительный и увлекательный рассказ обо всем, от кипения воды до основ существования Вселенной. Книга наполнена забавными историями и наглядными примерами, позволяющими разобраться в самых сложных хитросплетениях современных научных теорий.


Одиноки ли мы во Вселенной? Ведущие ученые мира о поисках инопланетной жизни

Если наша планета не уникальна, то вероятность повсеместного существования разумной жизни огромна. Более того, за всю историю человечества у инопланетян было достаточно времени, чтобы дать о себе знать. Так где же они? Какие они? И если мы найдем их, то чем это обернется? Ответы на эти вопросы ищут ученые самых разных профессий – астрономы, физики, космологи, биологи, антропологи, исследуя все аспекты проблемы. Это и поиск планет и спутников, на которых вероятна жизнь, и возможное устройство чужого сознания, и истории с похищениями инопланетянами, и изображение «чужих» в научной фантастике и кино.