Шаг за шагом. От детекторного приемника до супергетеродина - [5]
Существуют устройства, в которых накопление зарядов осуществляется за счет световой, тепловой и атомной энергии. Мы не будем подробно разбирать работу различных электрических генераторов, а лучше вернемся к вопросу о том, как выполняют полезную работу электроны, движущиеся по проводнику. Для примера рассмотрим обычный карманный фонарик. В нем имеется электрическая цепь, состоящая из источника тока — батарейки, коротких соединительных проводов (их роль может выполнять металлический корпус фонаря или полоски белой жести), лампочки и простейшего выключателя.
Для всех элементов электротехнических и радиотехнических устройств: аккумуляторов, электродвигателей, переключателей, лампочек, радиоламп, громкоговорителей, соединительных проводов и т. п. (листы 10, 12, 13, 18, 21, 24, 37, 44, 45, 58, 60, 67, 68, 84, 92, 93, 94, 95, 103, 104, 116, 184–219), имеются условные обозначения, с помощью которых можно выполнить сравнительно простой рисунок — так называемую принципиальную схему. Схема даст полное представление об электрических цепях рассматриваемого устройства. На схеме часто делают сокращенные обозначения, которые указывают порядковый номер того или иного элемента цепи. Например, если в цепи имеются две лампочки, то на схеме они обозначаются Л>1 и Л>2.
Примером простейшей схемы может служить изображенная на рисунке 6 схема карманного фонаря. Если замкнуть выключатель Вк>1, то в цепи карманного фонаря появится ток и лампочка Л>1 засветится. Свечение лампочки объясняется тем, что ее нить оказывает большое сопротивление движущимся зарядам. Дело в том, что заряды не двигаются по Проводнику беспрепятственно: то и дело они ударяются о встречные атомы или сталкиваются между собой. Из-за всех этих ударов и столкновений часть энергии движущихся зарядов превращается в тепло, подобно тому как превращается в тепло часть энергии молота, ударившего по наковальне (рис. 6).
Рис. 6.Движущиеся в электрической цепи заряды ударяются о неподвижные атомы проводника, благодаря чему проводник, по которому течет ток, например нить лампочки, нагревается.
Способность какого-либо участка электрической цепи препятствовать движению зарядов называется электрическим сопротивлением. Сопротивление нити лампочки довольно велико, а диаметр этой нити очень мал. Поэтому нить отбирает у тока много энергии и в то же время плохо излучает тепло. Нагревшись до высокой температуры, нить лампочки начинает светиться. Таким образом и преобразуется энергия движущихся зарядов, то есть энергия электрического тока, в свет и тепло. Само собой разумеется, что сопротивление соединительных проводов должно быть как можно меньше, чтобы они не отбирали энергию у движущихся зарядов.
На первый взгляд может показаться странным, как это движущийся электрон, обладающий ничтожной массой, нагревает до высокой температуры нить лампочки или спираль электроплитки. Конечно, если бы речь шла об одном электроне, то эти сомнения были бы оправданы. Действительно, энергия одного электрона настолько мала, что ее не стоит и учитывать. Но ведь по нити лампочки или по спирали плитки одновременно движется очень много электронов. Настолько много, что их количество может выражаться числом, у которого после единицы стоят десятки нулей! И хоть мал работник — электрон, а с такой огромной армией уже не считаться нельзя — она может проделать весьма значительную работу.
Другой путь использования энергии движущихся зарядов — это превращение ее в механическую работу. Для этой цели служат электрические двигатели, которые с помощью тока вращают колеса электровоза, поднимают ковши гигантских экскаваторов или приводят в движение винты атомохода «Ленин».
При упорядоченном движении электрических зарядов по проводнику он не только нагревается, но и приобретает магнитные свойства — становится своего рода магнитом (рис. 7).
Рис. 7.Вокруг движущихся зарядов возникает магнитное поле. Как и обычный магнит, проводник, по которому течет ток, обладает магнитными свойствами: он может поворачивать стрелку компаса, притягивать железные предметы или другие проводники, по которым течет ток.
Если взглянуть на постоянный магнит, например на стрелку компаса, то может показаться, что магнетизм не имеет ничего общего с электричеством. В действительности же магнитные свойства любого постоянного магнита связаны с движением зарядов и, в частности, с движением электронов вокруг атомного ядра. Магнитные свойства Земли, благодаря которым стрелка компаса всегда поворачивается на север, также обусловлены мощными токами, которые существуют как внутри земного шара, так и в атмосфере.
Если взять два проводника, по которым течет электрический ток. то они будут взаимодействовать между собой как два магнита, то есть будут взаимно притягиваться или отталкиваться (в зависимости от направления тока). Это явление и используется в электрических двигателях, где силы взаимного притяжения или отталкивания постоянного магнита и проводника с током или еще чаще одних только проводников с током выполняют нужную нам механическую работу (лист 13).
Самое сложное электротехническое устройство с множеством генераторов, двигателей, переключателей, нагревательных и осветительных приборов различных типов всегда можно рассматривать как комбинацию сравнительно простых цепей. Сложные и простые электрические цепи в свое время были тщательно изучены. Результатами такого изучения явились несколько основных законов, основных правил, которым подчиняются электрические процессы. С некоторыми из этих правил мы сейчас познакомимся.
В книге весьма подробно и в то же время очень доступно рассказано об электричестве и его использовании в энергетике и связи. Используя 400 специально разработанных иллюстраций, автор рассказывает об истории изучения электричества, о сложившихся основных системах постоянного и переменного тока и о той важной роли, которая досталась электричеству в энергетике нашего мира. Рудольф Анатольевич Сворень — автор многих популярных книг о физике и электронике, известный научный журналист, радиоинженер и кандидат педагогических наук, много лет проработавший в редакции журнала “Наука и жизнь” заместителем главного редактора.
Книга «Ваш радиоприемник» — удачный пример того, как можно просто, занимательно и в то же время достаточно конкретно рассказать о радиоэлектронной технике. Эта книга будет полезной не только для тех, кто хочет поближе познакомиться со своим приемником, но в первую очередь для тех, кто испытывает потребность познакомиться с основами современной радиоэлектроники.
Книга написана простым языком и ориентирована на средний и старший школьный возраст. В ней автор доступным языком излагает основы работы полупроводниковых приборов. Книга сопровождается множеством иллюстраций, благодаря чему шаг за шагом постигается сложный мир внутри транзисторов.Поскольку книга больше ориентирована на детей, то повествование идет буквально "на пальцах", не используется никаких сложных формул или вычислений — только как полупроводниковые приборы работают и как их использовать.
В этой книге рассказано о ламповых усилителях низкой частоты, громкоговорителях и их акустическом оформлении, о некоторых путях улучшения качества звучания радиоаппаратуры. Рассказ об основах радиоэлектроники и принципах усиления иллюстрируется схемами и описаниями радиолюбительских конструкций: радиограммофонов, высококачественных усилителей, простого школьного радиоузла, акустических агрегатов.
В книге интересно и увлекательно автор рассказывает об актуальных исследованиях в некоторых областях физики, астрономии, космонавтики, электроники и знакомит учащихся с новейшими достижениями и проблемами науки.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Третья книга трилогии «Тарантул».Осенью 1943 года началось общее наступление Красной Армии на всем протяжении советско-германского фронта. Фашисты терпели поражение за поражением и чувствовали, что Ленинград окреп и готовится к решающему сражению. Информация о скором приезде в осажденный город опасного шпиона Тарантула потребовала от советской контрразведки разработки серьезной и рискованной операции, участниками которой стали ребята, знакомые читателям по первым двум повестям трилогии – «Зеленые цепочки» и «Тайная схватка».Для среднего школьного возраста.
Книгу составили известные исторические повести о преобразовательной деятельности царя Петра Первого и о жизни великого русского полководца А. В. Суворова.
Молодая сельская учительница Анна Васильевна, возмущенная постоянными опозданиями ученика, решила поговорить с его родителями. Вместе с мальчиком она пошла самой короткой дорогой, через лес, да задержалась около зимнего дуба…Для среднего школьного возраста.
Лирическая повесть о героизме советских девушек на фронте время Великой Отечественной воины. Художник Пинкисевич Петр Наумович.