Сейчас. Физика времени - [79]

Шрифт
Интервал

Представьте, что у вас имеется очень большое число – пусть в нем будет, скажем, 2048 знаков, – и вы хотите разложить его на простые множители. (Разложение на простые множители [факторизация] – ключ к взлому некоторых весьма продвинутых систем шифрования [например, RSA[221] ].) Вас не интересуют все те попытки разложения, которые не дают результата; все, что вам на самом деле нужно, это два числа, примерно по 1024 знака каждое, которые, собственно, и станут делителями вашего числа. Это надежда квантовых вычислений; именно по этой (отчасти) причине разведывательные агентства выделяют деньги на исследования и развитие. Квантовые вычисления потенциально помогают проводить невероятно сложные расчеты параллельно. Кроме того, их в принципе можно выполнять без выделения тепла. В обычном компьютере всякий раз при перекидывании бита с места на место выделяется некоторое минимальное количество теплоты[222]. Но при квантовых вычислениях ваша машина генерирует тепло только в момент финального измерения кубита.

Будут ли квантовые вычисления иметь успех? Я в этом смысле настроен пессимистично. Кое-какие простые расчеты (разложение 6 как 2 × 3, разложение 15 как 3 × 5) уже удалось провести, но организовать таким образом сложные вычисления намного труднее. Мало того, пессимистично настроен не только я; многие из тех, кто усердно трудится в этой области, в глубине души тоже настроены скептически. Тогда почему они этим занимаются? Думаю, причина в том, что их буквально завораживают вопросы квантовых измерений. Благодаря этому у них наконец появились деньги на исследования того, что происходит при манипулировании квантовыми системами и при их измерении. Уже появились чудесные новые постулаты, такие как теорема о невозможности передачи информации с помощью запутанных квантовых частиц; ее можно было доказать еще в 1940-е годы. И если их работа приведет к прорыву в наших представлениях о квантовом измерении, результатом всего этого может стать очередная революция в физике.

Глава 20

Вот и путешествие назад во времени

Открыт позитрон – позже Фейнман определил его как электрон, движущийся назад во времени…

Так, если мои расчеты верны, то, когда эта малышка разгонится до 88 миль в час,… ты такое увидишь, Марти!

Д-р Эммет Браун при запуске машины времени в фильме «Назад в будущее»[223]

Нечто, выглядевшее как электрон с неправильным зарядом (положительным, а не отрицательным), было открыто 2 августа 1932 года Карлом Андерсоном[224]. В своей статье он назвал эту частицу позитроном и объяснил ее как антивещество, предсказанное Полем Дираком годом ранее. Через 17 лет Ричард Фейнман предположил, что обнаруженная Андерсоном частица представляет собой электрон, движущийся назад во времени.

Андерсон использовал камеру Вильсона (туманная камера) – устройство, регистрирующее стремительный пролет электронов и протонов с помощью частиц жидкости, которые конденсируются из пара на их пути следования; на фото, которое он сделал, эти частицы выглядят как маленькие черные точки. Позитрон входит снизу, проходит сквозь тонкий свинцовый лист, после чего выходит сверху. Его маршрут искривляется, потому что Андерсон поместил камеру Вильсона в сильное магнитное поле. След (трек) пролетевшей частицы загибается влево: это свидетельствует о ее положительном заряде, как у протона, – но то, как трек загибается, говорит, что частица гораздо легче протона. В верхней части изображения кривизна следа больше – это означает замедление частицы, то есть подтверждает, что она прилетела снизу.

Описание этого события как пролета обычного электрона, движущегося назад во времени, может показаться странным, однако именно такой подход стал стандартным при рассмотрении подобных частиц в продвинутых квантовых вычислениях. Придумал его Ричард Фейнман. Движение назад во времени стало одним из обычных инструментов, и многие физики пользуются им практически ежедневно. В ходе изучения продвинутых курсов по квантовой физике студентов учат пользоваться методами с обратным ходом времени. Даже в «простых» вычислениях, таких как столкновение двух электронов, фигурируют частицы (как правило, фотоны), движущиеся назад во времени.

Никто не решился бы без убедительных причин вводить в расчеты движение назад во времени. В этом случае одной из убедительных причин стала нелепая теория позитрона, предложенная Дираком незадолго до работы Фейнмана.

Самая абсурдная теория этой книги

Когда Андерсон увидел свой позитрон, ему и в голову не пришло, что это может быть электрон, движущийся назад во времени. Он считал, что это пузырек, пустота, движущаяся дырка в бесконечном море отрицательных электронов, густо заполняющих пространство. Я серьезно. Как бы абсурдно это ни звучало, именно такое предсказание хотел подтвердить Андерсон своим экспериментом. Идея принадлежала не Андерсону; это была концепция Поля Дирака – человека, которому удалось объединить новые квантовые идеи (о том, что электрон представляет собой волну) с эйнштейновской теорией относительности (хотя к вопросу о мгновенном коллапсе волновой функции он не обращался).


Рекомендуем почитать
Во власти цифр. Как числа управляют нашей жизнью и вводят в заблуждение

Миром правят числа. Все чаще и чаще решения принимают не люди, а математические модели. В числах измеряется все – от наших успехов в образовании и работе и состояния нашего здоровья до состояния экономики и достижений политики. Но числа не так объективны, как может показаться. Кроме того, мы охотнее верим числам, подтверждающим наше мнение, и легко отбрасываем те результаты, которые идут вразрез с нашими убеждениями… Анализируя примеры обращения с численными данными в сферах здравоохранения, политики, социологии, в научных исследованиях, в коммерции и в других областях и проливая свет на ряд распространенных заблуждений, нидерландский журналист, специалист по числовой грамотности Санне Блау призывает мыслить критически и советует нам быть осмотрительнее, о чем бы ни шла речь – о повседневных цифрах, управляющих нашим благополучием, или о статистике, позволяющей тем, кто ее применяет, достичь огромной власти и влияния. «Числа влияют на то, что мы пьем, что едим, где работаем, сколько зарабатываем, где живем, с кем вступаем в брак, за кого голосуем, как решаем вопрос, брать ли ипотеку, как оплачиваем страховку.


Старший брат следит за тобой. Как защитить себя в цифровом мире

В эпоху тотальной цифровизации сложно представить свою жизнь без интернета и умных устройств. Но даже люди, осторожно ведущие себя в реальном мире, часто недостаточно внимательно относятся к своей цифровой безопасности. Между тем с последствиями такой беспечности можно столкнуться в любой момент: злоумышленник может перехватить управление автомобилем, а телевизор – записывать разговоры зрителей, с помощью игрушек преступники могут похищать детей, а к видеокамерам можно подключиться и шпионить за владельцами.


Продолжим наши игры+Кандибобер

Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.


О науке без звериной серьёзности

О чем это? • о ключевых словах современной науки; • о самых страшных экспериментах; • о сущности цивилизации. «Любому человеку нужен просто разговор – о важном, научном. Это задача научных журналистов. И один из самых ярких, самых ясных, самых ответственных – Григорий Тарасевич». Александр Архангельский, телеведущий, писатель, профессор Высшей школы экономики «…Книга вызывает множество противоречивых чувств: с рядом моментов хочется спорить, от большинства историй смеялась в голос, а от некоторых глав становилось безумно грустно».


Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет

История машинного обучения, от теоретических исследований 50-х годов до наших дней, в изложении ведущего мирового специалиста по изучению нейросетей и искусственного интеллекта Терренса Сейновски. Автор рассказывает обо всех ключевых исследованиях и событиях, повлиявших на развитие этой технологии, начиная с первых конгрессов, посвященных искусственному разуму, и заканчивая глубоким обучением и возможностями, которые оно предоставляет разработчикам ИИ. В формате PDF A4 сохранен издательский макет.


Социальное общение и демократия. Ассоциации и гражданское общество в транснациональной перспективе, 1750-1914

Что значат для демократии добровольные общественные объединения? Этот вопрос стал предметом оживленных дискуссий после краха государственного социализма и постепенного отказа от западной модели государства всеобщего благосостояния, – дискуссий, сфокусированных вокруг понятия «гражданское общество». Ответ может дать обращение к прошлому, а именно – к «золотому веку» общественных объединений между Просвещением и Первой мировой войной. Политические теоретики от Алексиса де Токвиля до Макса Вебера, равно как и не столь известные практики от Бостона до Санкт-Петербурга, полагали, что общество без добровольных объединений неминуемо скатится к деспотизму.