Сейчас. Физика времени - [71]

Шрифт
Интервал

) движется не с той скоростью, с какой перемещается ее задняя часть. Измерьте скорость (обычно это делается через измерение импульса, то есть массы, умноженной на скорость), и вы получите одно из множества возможных значений. Измерьте местоположение, и вы получите любое значение в пределах ширины волны. Буквально у всех волн обнаружится некоторая неопределенность, как в скорости, так и в позиции.

В случае принципа неопределенности Гейзенберга математика в точности следует за математикой классических волн. В Приложении 5 «Математика неопределенности» это ясно показано. Математическое выражение принципа Гейзенберга, часто записываемое как ΔxΔph/4π[192], идентично (за исключением умножения на планковскую постоянную h) уравнению, описывающему классические волны, включая водяные, звуковые и радиоволны.

Принцип неопределенности означает, что физика уже не может делать точных предсказаний. Это значит, что будущее положение частицы невозможно точно понять, поскольку для этого нужны конкретные значения как текущего местоположения частицы, так и ее текущей скорости. Более того, в сочетании с нынешними представлениями о хаосе небольшие неопределенности, порожденные квантовой физикой, стремительно увеличиваются со временем и оказывают глубокое воздействие на макроскопический мир. Согласно некоторым теориям, именно квантовой неопределенности на самых ранних стадиях Большого взрыва мы обязаны существованием галактик и галактических скоплений.

Эйнштейну не нравился аспект новой квантовой физики, связанный с неопределенностью, хотя он сам активно разрабатывал эту область. Из принципа неопределенности следовало, что физика неполна, а будущее каким-то образом определяется чем-то, помимо прошлого. Квантовая физика не могла сказать, чем именно, она лишь констатировала, что это «что-то» кажется случайным. В 1926 году Эйнштейн писал Максу Борну:

Квантовая механика действительно впечатляет. Но внутренний голос убеждает, что это еще не настоящее. Эта теория говорит о многом, но все же не приближает нас к разгадке тайны «Старика». По крайней мере, я уверен, что Он не бросает кости.

Вернер Гейзенберг вспоминает, что на какой-то конференции после аналогичного замечания Эйнштейна Нильс Бор ответил: «Не нам указывать Богу, как управлять миром»[193].

Минимальное расстояние

Существует очень маленькое расстояние – по всей видимости, минимальное из тех, которые мы можем обсуждать сколько-нибудь осмысленно. (Неясно, правда, действительно ли можем.) Расстояние это называется планковской длиной и берет начало от попыток совместить теорию вероятностей с квантовой физикой. Планковская длина приблизительно равна 1,6 × 10>−35 метра.

Планковская длина – следствие принципа неопределенности, подразумевающего, что никакая небольшая область «пустого» пространства не может обладать нулевой энергией, потому что если бы это было так, энергия этой области была бы определена точно. Так что квантовая физика, как правило, приписывает крохотную энергию вакуума даже пустому во всех остальных отношениях пространству. Чем меньше рассматриваемая область, тем больше энергия вакуума. Если область достаточно мала, сочетание большой энергии в пределах малого радиуса будет удовлетворять требованиям формулы Шварцшильда, и вакуум получит микроскопическую черную дыру[194].

Судя по всему, квантовая физика и общая теория относительности вместе говорят о том, что вакуум представляет собой микроскопическую пену из крохотных, но вездесущих черных дыр. Более того, каждая черная дыра при этом испытывает очень быстрые флуктуации (появляется и пропадает) в масштабе времени, задаваемом планковским временем – временем, за которое свет проходит одну планковскую длину. Некоторые теоретики выдвигают предположение, что пространство, возможно, оцифровано, как наши компьютеры, и существует только в виде дискретных точек, разделенных приблизительно планковской длиной.

По поводу всех подобных рассуждений у меня есть одно всеохватное критическое замечание: теория здесь намного обгоняет эксперимент. В прошлом теории возникали на базе измерений и экспериментальных открытий. Если что-то имеет место, то это что-то в принципе возможно, иначе быть не может. В теории все не так: если теория что-то утверждает, это утверждение может быть как верным, так и ошибочным. Все эти новые постулаты, в которых обсуждается планковская длина, никак не связаны с экспериментальными фактами; они основываются исключительно на стремлении к математической элегантности. Если так и надо, то в физике никогда прежде ничего подобного не было. По существу, мы никак не сумели проверить общую теорию относительности в условиях сильной гравитации (она проверялась только возле слабого предела, весьма далекого от параметров черных дыр); у нас нет убедительных указаний на характеристики черных дыр (мы знаем только, что существуют массивные объекты, не излучающие видимого света); кроме того, нет экспериментального подтверждения таких явлений, как излучение черных дыр и их энтропия.

Все теоретические рассуждения вокруг этих тем вполне могут оказаться всего лишь причудливыми фантазиями. В прошлом физика развивалась совершенно иначе. Помимо традиционных четырех взаимодействий (электромагнитное, ядерное [известное как сильное взаимодействие], сила радиоактивности [известная как слабое взаимодействие] и гравитация) может существовать сколько угодно дополнительных сил, и не исключено, что сначала их придется открыть, чтобы потом иметь возможность включить их в правильную теорию.


Рекомендуем почитать
Во власти цифр. Как числа управляют нашей жизнью и вводят в заблуждение

Миром правят числа. Все чаще и чаще решения принимают не люди, а математические модели. В числах измеряется все – от наших успехов в образовании и работе и состояния нашего здоровья до состояния экономики и достижений политики. Но числа не так объективны, как может показаться. Кроме того, мы охотнее верим числам, подтверждающим наше мнение, и легко отбрасываем те результаты, которые идут вразрез с нашими убеждениями… Анализируя примеры обращения с численными данными в сферах здравоохранения, политики, социологии, в научных исследованиях, в коммерции и в других областях и проливая свет на ряд распространенных заблуждений, нидерландский журналист, специалист по числовой грамотности Санне Блау призывает мыслить критически и советует нам быть осмотрительнее, о чем бы ни шла речь – о повседневных цифрах, управляющих нашим благополучием, или о статистике, позволяющей тем, кто ее применяет, достичь огромной власти и влияния. «Числа влияют на то, что мы пьем, что едим, где работаем, сколько зарабатываем, где живем, с кем вступаем в брак, за кого голосуем, как решаем вопрос, брать ли ипотеку, как оплачиваем страховку.


Старший брат следит за тобой. Как защитить себя в цифровом мире

В эпоху тотальной цифровизации сложно представить свою жизнь без интернета и умных устройств. Но даже люди, осторожно ведущие себя в реальном мире, часто недостаточно внимательно относятся к своей цифровой безопасности. Между тем с последствиями такой беспечности можно столкнуться в любой момент: злоумышленник может перехватить управление автомобилем, а телевизор – записывать разговоры зрителей, с помощью игрушек преступники могут похищать детей, а к видеокамерам можно подключиться и шпионить за владельцами.


Продолжим наши игры+Кандибобер

Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.


О науке без звериной серьёзности

О чем это? • о ключевых словах современной науки; • о самых страшных экспериментах; • о сущности цивилизации. «Любому человеку нужен просто разговор – о важном, научном. Это задача научных журналистов. И один из самых ярких, самых ясных, самых ответственных – Григорий Тарасевич». Александр Архангельский, телеведущий, писатель, профессор Высшей школы экономики «…Книга вызывает множество противоречивых чувств: с рядом моментов хочется спорить, от большинства историй смеялась в голос, а от некоторых глав становилось безумно грустно».


Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет

История машинного обучения, от теоретических исследований 50-х годов до наших дней, в изложении ведущего мирового специалиста по изучению нейросетей и искусственного интеллекта Терренса Сейновски. Автор рассказывает обо всех ключевых исследованиях и событиях, повлиявших на развитие этой технологии, начиная с первых конгрессов, посвященных искусственному разуму, и заканчивая глубоким обучением и возможностями, которые оно предоставляет разработчикам ИИ. В формате PDF A4 сохранен издательский макет.


Социальное общение и демократия. Ассоциации и гражданское общество в транснациональной перспективе, 1750-1914

Что значат для демократии добровольные общественные объединения? Этот вопрос стал предметом оживленных дискуссий после краха государственного социализма и постепенного отказа от западной модели государства всеобщего благосостояния, – дискуссий, сфокусированных вокруг понятия «гражданское общество». Ответ может дать обращение к прошлому, а именно – к «золотому веку» общественных объединений между Просвещением и Первой мировой войной. Политические теоретики от Алексиса де Токвиля до Макса Вебера, равно как и не столь известные практики от Бостона до Санкт-Петербурга, полагали, что общество без добровольных объединений неминуемо скатится к деспотизму.