Сейчас. Физика времени - [65]

Шрифт
Интервал

заслуживает самого серьезного внимания.

Космологическая стрела

Эддингтон предложил энтропийную стрелу потому, что увеличение энтропии представлялось ему единственным законом физики, в котором имелось направление времени. Оставался вопрос: почему энтропия увеличивается? Ответ был найден в Большом взрыве, великом открытии, объясняющем то, что наша нынешняя Вселенная не умерла. Большой взрыв позволил Вселенной всегда быть молодой, а следовательно, до сих пор оставаться неразупорядоченной. Расширение пространства создало много места для дополнительного роста энтропии.

Однако с принятием теории Большого взрыва необходимо посмотреть на проблему стрелы времени по-новому. Энтропийный механизм работает не очень удовлетворительно. Тогда нужен ли он? Если мы представляем Вселенную в качестве пространства-времени, почему она должна расширяться только в смысле пространства? Почему и не во времени тоже? На самом деле это и происходит: каждую секунду мы прибавляем новую секунду ко времени. Возможно, о течении времени более точно следует размышлять как о создании нового времени. Представлять себе не трехмерный Большой взрыв, а четырехмерный, с постоянным безостановочным созданием пространства и времени.

В главе 11 я предлагал представить, что вам дано полное знание Вселенной, почти равное Божественному, в том числе о двух моментах, по поводу которых все интересуются, какой из них был первым. Как бы вы ответили? Тогда я посоветовал высчитать энтропию двух моментальных снимков, сделанных в эти моменты. Первым был тот, энтропия которого меньше. Но вы можете также оценить и размеры Вселенной. Момент, который произошел в меньшей по размеру Вселенной, – первый.

Чтобы хорошенько в этом разобраться, нам нужно окунуться в другое великое и революционное открытие XX века. В то, которое во многом еще более, чем теория относительности, приводит в замешательство и противоречит здравому смыслу.

Часть III

«Жуткая» физика

Глава 17

Кот одновременно живой и мертвый

Начинаем представление квантовой физики с самого абсурдного примера…

Я не могу описать [это]… но я узнаю это, когда увижу.

Судья Верховного суда США Поттер Стюарт (не по вопросу измерений)

Как будто головоломные концепции теории относительности оказались недостаточно разрушительными для XX века, сразу после их появления произошла еще одна мучительная, но вместе с тем значимая революция – рождение квантовой физики. Одним из ее основателей был Альберт Эйнштейн; именно ему принадлежит вывод о том, что энергия света квантована и ее можно регистрировать только своеобразными пакетами, которые мы сегодня называем фотонами[172]. Но квантовая физика завоевала себе место под солнцем не так быстро, как теория относительности. Она отличалась такими странными и загадочными чертами, что даже сами ее изобретатели не прекращали споров и дебатов о том, что она означает, как ее следует интерпретировать и не окажется ли она всего лишь временной аппроксимацией[173], притом что более полное описание скрытой под ней реальности еще предстоит открыть. Эти дебаты не утихают до сего дня.

Проблемы этой теории вытекают из самой ее формулировки. Квантовая физика постулирует, что окружающий нас реальный мир описывается чем-то расплывчатым и эфемерным, к тому же принципиально неизмеримым, называемым амплитудой. Амплитуда может выражаться обычным числом; комплексным числом, имеющим и действительную, и мнимую составляющие; или набором чисел, называемым волновой функцией. Квантовая физика постулирует, что амплитуда призрачна, недостижима и напоминает маячащий на заднем плане дух, который воплощает в себе всю реальность. Однако даже если амплитуда точно известна, вы не сумеете предсказать результат измерения, а можете лишь назвать вероятность того, что измерение даст какой-то конкретный результат.

Все это звучит загадочно и неопределенно, хотя именно эти принципы используются сегодня при разработке электроники, которая оживляет наши смартфоны, планшеты, телевизоры, цифровые камеры и компьютеры. Буквально каждый физик сталкивается с призрачными амплитудами и волновыми функциями. Большинство ученых просто игнорируют не поддающиеся измерению аспекты квантовой теории и продолжают делать свое дело.

Большинство, но не Эйнштейн. Все его прорывные открытия в физике сделаны в результате того, что он сосредоточивал внимание на парадоксальных результатах, необъясненных явлениях и вообще на вещах, которые для него лично не имели физического смысла. Новая квантовая физика точно укладывалась в эти категории – она была более загадочной, чем замедление времени и уменьшение длины; более странной, чем черные дыры; более невообразимой, чем обратный ход времени. Ее, возможно, даже сейчас самый огорчительный аспект можно проиллюстрировать историей, сочиненной Эрвином Шрёдингером[174] – физиком, имя которого известно каждому студенту по важнейшему уравнению Шрёдингера. Он был коллегой и союзником Эйнштейна и разделял его обеспокоенность в связи с квантовой физикой[175].

Кот Шрёдингера

Шрёдингер придумал яркий пример в поддержку эйнштейновского утверждения о том, что квантовая физика фундаментально несостоятельна. Ситуация проста, хотя и намеренно жестока; скорее всего, это сделано для того, чтобы привлечь ваше внимание и заставить как следует оценить когнитивный диссонанс, который порождает эта история.


Рекомендуем почитать
Инквизиция и инквизиторы во Франции

После Альбигойского крестового похода — серии военных кампаний по искоренению катарской ереси на юге Франции в 1209–1229 годах — католическая церковь учредила священные трибуналы, поручив им тайный розыск еретиков, которым все-таки удалось уберечься от ее карающей десницы. Так во Франции началось становление инквизиции, которая впоследствии распространилась по всему католическому миру. Наталия Московских рассказывает, как была устроена французская инквизиция, в чем были ее особенности, как она взаимодействовала с папским престолом и королевской властью.


Во власти цифр. Как числа управляют нашей жизнью и вводят в заблуждение

Миром правят числа. Все чаще и чаще решения принимают не люди, а математические модели. В числах измеряется все – от наших успехов в образовании и работе и состояния нашего здоровья до состояния экономики и достижений политики. Но числа не так объективны, как может показаться. Кроме того, мы охотнее верим числам, подтверждающим наше мнение, и легко отбрасываем те результаты, которые идут вразрез с нашими убеждениями… Анализируя примеры обращения с численными данными в сферах здравоохранения, политики, социологии, в научных исследованиях, в коммерции и в других областях и проливая свет на ряд распространенных заблуждений, нидерландский журналист, специалист по числовой грамотности Санне Блау призывает мыслить критически и советует нам быть осмотрительнее, о чем бы ни шла речь – о повседневных цифрах, управляющих нашим благополучием, или о статистике, позволяющей тем, кто ее применяет, достичь огромной власти и влияния. «Числа влияют на то, что мы пьем, что едим, где работаем, сколько зарабатываем, где живем, с кем вступаем в брак, за кого голосуем, как решаем вопрос, брать ли ипотеку, как оплачиваем страховку.


Старший брат следит за тобой. Как защитить себя в цифровом мире

В эпоху тотальной цифровизации сложно представить свою жизнь без интернета и умных устройств. Но даже люди, осторожно ведущие себя в реальном мире, часто недостаточно внимательно относятся к своей цифровой безопасности. Между тем с последствиями такой беспечности можно столкнуться в любой момент: злоумышленник может перехватить управление автомобилем, а телевизор – записывать разговоры зрителей, с помощью игрушек преступники могут похищать детей, а к видеокамерам можно подключиться и шпионить за владельцами.


Продолжим наши игры+Кандибобер

Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.


Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет

История машинного обучения, от теоретических исследований 50-х годов до наших дней, в изложении ведущего мирового специалиста по изучению нейросетей и искусственного интеллекта Терренса Сейновски. Автор рассказывает обо всех ключевых исследованиях и событиях, повлиявших на развитие этой технологии, начиная с первых конгрессов, посвященных искусственному разуму, и заканчивая глубоким обучением и возможностями, которые оно предоставляет разработчикам ИИ. В формате PDF A4 сохранен издательский макет.


Социальное общение и демократия. Ассоциации и гражданское общество в транснациональной перспективе, 1750-1914

Что значат для демократии добровольные общественные объединения? Этот вопрос стал предметом оживленных дискуссий после краха государственного социализма и постепенного отказа от западной модели государства всеобщего благосостояния, – дискуссий, сфокусированных вокруг понятия «гражданское общество». Ответ может дать обращение к прошлому, а именно – к «золотому веку» общественных объединений между Просвещением и Первой мировой войной. Политические теоретики от Алексиса де Токвиля до Макса Вебера, равно как и не столь известные практики от Бостона до Санкт-Петербурга, полагали, что общество без добровольных объединений неминуемо скатится к деспотизму.