Сейчас. Физика времени - [43]

Шрифт
Интервал

.

Это было одно из важнейших, если не самых важных, экспериментальных открытий XX века, и так отмеченного огромным количеством достижений. Его можно соотнести по важности с телеологической теорией Коперника, который 400 лет назад пришел к выводу о том, что Земля вращается вокруг Солнца. Казалось, Хаббл ставит Млечный Путь в центр Вселенной.

Но так интерпретировать его концепцию неправильно. Открытие Хаббла не поставило нас в центр Вселенной, и он прекрасно это осознавал. Поместите себя в собственную систему отсчета любой из удаляющихся галактик. Все они разлетаются все дальше и дальше друг от друга. В вашей системе отсчета все эти объекты удаляются от вас. Неважно, в какой из галактик вы находитесь. Закон Хаббла (закон всеобщего разбегания галактик) действует одинаково для всех.

Это замечательное свойство закона Хаббла легче всего представить на примере батона с изюмом. Вообразите, что вы изюминка в батоне, который, выпекаясь, расширяется. Соседи-изюминки становятся все дальше и дальше от вас. Те, которые находятся от вас на расстоянии, вдвое превышающем расстояние до ближних, удаляются от вас вдвое быстрее. Может создаться впечатление, что вы находитесь в центре батона, но, возможно, все иначе. Тот же самый закон действует в отношении всех изюминок. И хотя публика думала (ошибочно), что открытие Хаббла поставило Землю в центр Вселенной, ученый быстро объяснил, что это не так.

Не нужна никакая кора

Еще одно объяснение расширения Вселенной было куда более фантастичным. Оно было предложено за два года до открытия Хаббла Жоржем Леметром[124], бельгийским священником и профессором физики Лувенского католического университета. Леметр выдвинул модель, основывающуюся на общей теории относительности, согласно которой ранняя Вселенная представляла собой «космическое яйцо, взорвавшееся в момент творения». Этой же идеей Леметр объяснял и возникновение «первичного атома». Некоторые считают, что заслуга в разработке теории расширения Вселенной принадлежит Леметру, а не Хабблу. Однако в своих работах Леметр отталкивался от некоторых предварительных результатов, полученных Хабблом. К тому же они были опубликованы в малоизвестных бельгийских научных журналах, которые за пределами страны мало кто читал. Леметра называли «величайшим ученым, о котором никто почти ничего не знал».

Леметр изучал общую теорию относительности и применял ее ко Вселенной в целом. Открытия Хаббла убедили священника в том, что Вселенная расширяется. Но, по мнению Леметра, взорвалась не материя, заключенная в какой-то части космоса, а сам космос. Эта концепция хорошо согласовывалась с уравнениями Эйнштейна.

Эйнштейн считал, что Вселенная статична, и даже добавил в свои уравнения так называемую космологическую постоянную. По сути, она вводила в уравнения силы отталкивания, позволяющие преодолеть взаимное притяжение космических объектов, что вызвало бы коллапс Вселенной. Эйнштейн посчитал идею Леметра о расширяющейся Вселенной несерьезной и сказал ему: «Ваши вычисления правильные, но ваша физика ужасна».

Однако после открытий Хаббла Леметр стал неожиданно знаменит. 31 января 1931 года газета New York Times вышла под громогласным заголовком: «Леметр выдвигает идею о том, что начало Вселенной положил один-единственный великий первоатом, в котором была сконцентрирована вся энергия». Эйнштейн убрал свою космологическую постоянную и впоследствии сожалел, что применил ее. Известный советский физик Георгий Гамов говорил, что Эйнштейн рассматривал ввод этой постоянной в свои уравнения «как величайшую ошибку всей жизни». (Это ирония судьбы. Сегодня мы верим в то, что космологическая постоянная очень важна и необходима в космологии. Я коснусь этого вопроса во время рассказа о темной энергии.)

В 1933 году газеты сообщали, что после лекции Леметра в Принстоне Эйнштейн встал и сказал: «Это самое красивое и удовлетворительное объяснение творения, какое я только слышал». Он явно изменил свою точку зрения на «ужасную» физику ученого. Леметр также высказал предположение, что космические лучи (радиация), открытые в 1912 году, могли быть «остатками» Большого взрыва. По этому поводу он ошибался. Действительно, это были «остатки», но только в виде микроволнового (реликтового) излучения, а не радиации. Однако люди склонны забывать теоретические ошибки физиков. К сожалению, это не распространяется на экспериментаторов.

Согласно математическим расчетам Леметра, каждая галактика занимала в космосе определенное местоположение. Закон Хаббла появился не из-за движения галактик, а благодаря расширению космического пространства между ними. Он стал еще одним примером действия уравнений Эйнштейна, которые допускали «резиноподобную» природу пространства. Мы уже видели гибкость пространства применительно к релятивистской теории (глава 2), включая парадокс с шестом и сараем и две уловки со скоростью света (глава 5).

Космологическая модель Леметра используется по сей день, хотя теперь ее иногда называют моделью Фридмана−Леметра−Робертсона−Уокера (FLRW) по именам других космологов-теоретиков, участвовавших в ее развитии. Эта модель оправдала предсказания относительно природы очень отдаленных областей нашей Вселенной. Ученые вскоре запустили в научный оборот термин


Рекомендуем почитать
Во власти цифр. Как числа управляют нашей жизнью и вводят в заблуждение

Миром правят числа. Все чаще и чаще решения принимают не люди, а математические модели. В числах измеряется все – от наших успехов в образовании и работе и состояния нашего здоровья до состояния экономики и достижений политики. Но числа не так объективны, как может показаться. Кроме того, мы охотнее верим числам, подтверждающим наше мнение, и легко отбрасываем те результаты, которые идут вразрез с нашими убеждениями… Анализируя примеры обращения с численными данными в сферах здравоохранения, политики, социологии, в научных исследованиях, в коммерции и в других областях и проливая свет на ряд распространенных заблуждений, нидерландский журналист, специалист по числовой грамотности Санне Блау призывает мыслить критически и советует нам быть осмотрительнее, о чем бы ни шла речь – о повседневных цифрах, управляющих нашим благополучием, или о статистике, позволяющей тем, кто ее применяет, достичь огромной власти и влияния. «Числа влияют на то, что мы пьем, что едим, где работаем, сколько зарабатываем, где живем, с кем вступаем в брак, за кого голосуем, как решаем вопрос, брать ли ипотеку, как оплачиваем страховку.


Старший брат следит за тобой. Как защитить себя в цифровом мире

В эпоху тотальной цифровизации сложно представить свою жизнь без интернета и умных устройств. Но даже люди, осторожно ведущие себя в реальном мире, часто недостаточно внимательно относятся к своей цифровой безопасности. Между тем с последствиями такой беспечности можно столкнуться в любой момент: злоумышленник может перехватить управление автомобилем, а телевизор – записывать разговоры зрителей, с помощью игрушек преступники могут похищать детей, а к видеокамерам можно подключиться и шпионить за владельцами.


Продолжим наши игры+Кандибобер

Виктор Пронин пишет о героях, которые решают острые нравственные проблемы. В конфликтных ситуациях им приходится делать выбор между добром и злом, отстаивать свои убеждения или изменять им — тогда человек неизбежно теряет многое.


О науке без звериной серьёзности

О чем это? • о ключевых словах современной науки; • о самых страшных экспериментах; • о сущности цивилизации. «Любому человеку нужен просто разговор – о важном, научном. Это задача научных журналистов. И один из самых ярких, самых ясных, самых ответственных – Григорий Тарасевич». Александр Архангельский, телеведущий, писатель, профессор Высшей школы экономики «…Книга вызывает множество противоречивых чувств: с рядом моментов хочется спорить, от большинства историй смеялась в голос, а от некоторых глав становилось безумно грустно».


Антология машинного обучения. Важнейшие исследования в области ИИ за последние 60 лет

История машинного обучения, от теоретических исследований 50-х годов до наших дней, в изложении ведущего мирового специалиста по изучению нейросетей и искусственного интеллекта Терренса Сейновски. Автор рассказывает обо всех ключевых исследованиях и событиях, повлиявших на развитие этой технологии, начиная с первых конгрессов, посвященных искусственному разуму, и заканчивая глубоким обучением и возможностями, которые оно предоставляет разработчикам ИИ. В формате PDF A4 сохранен издательский макет.


Социальное общение и демократия. Ассоциации и гражданское общество в транснациональной перспективе, 1750-1914

Что значат для демократии добровольные общественные объединения? Этот вопрос стал предметом оживленных дискуссий после краха государственного социализма и постепенного отказа от западной модели государства всеобщего благосостояния, – дискуссий, сфокусированных вокруг понятия «гражданское общество». Ответ может дать обращение к прошлому, а именно – к «золотому веку» общественных объединений между Просвещением и Первой мировой войной. Политические теоретики от Алексиса де Токвиля до Макса Вебера, равно как и не столь известные практики от Бостона до Санкт-Петербурга, полагали, что общество без добровольных объединений неминуемо скатится к деспотизму.