Серебристые облака и их наблюдение - [4]
Нижний слой атмосферы Земли (тропосфера) имеет следующий химический состав (по объему, в процентах): азот — 78,09, кислород — 20,95, аргон — 0,93, углекислый газ — 0,03. На долю остальных газов приходятся уже тысячные и десятитысячные доли процента. Такой состав атмосфера имеет почти до высоты 90 км.
Но установить это удалось не сразу. Длительное время в науке господствовала теория диффузионного разделения газов, согласно которой самые легкие газы (водород и гелий) сосредоточены в верхних слоях атмосферы, а более тяжелые (азот, кислород и особенно аргон и углекислый газ) — в нижних слоях. Уже в 30-е годы XX в. удалось доказать, что благодаря интенсивному перемешиванию состав атмосферы до довольно больших высот остается постоянным и только потом начинается диффузионное разделение.
Кроме постоянных компонентов, перечисленных выше, атмосфера содержит переменные компоненты: озон и водяной пар. Эти компоненты оказывают большое влияние на тепловой режим Земли и ее атмосферы.
Рассмотрим схему строения земной атмосферы (рис. 2).
Рис. 2.Схема строения земной атмосферы:
>1 — тропосферные облака нижнего яруса, 2 — перистые облака, 3 — перламутровые облака, 4 — серебристые облака, 5 метеоры, 6 — болид, 7 — полярные сияния, 8 — метеорологическая ракета, 9 — геофизическая ракета.
Известно, что в ее нижнем слое, именуемом тропосферой (от греческого тропэ — поворот), температура быстро падает с высотой: на 6÷7 градусов на километр высоты (зимой несколько меньше). Это происходит потому, что нижние (приземные) слои атмосферы получают тепло от земной поверхности, излучающей его в диапазоне инфракрасных лучей и передающей тепло также за счет конвекции и теплопроводности. В тропосфере образуются облака, осадки, дуют ветры, образуются самые различные метеорологические явления.
В зависимости от строения атомов и молекул различных газов они способны поглощать в той или иной степени излучение в различных диапазонах длин волн. Тар, молекула водяного пара (Н>2О) интенсивно поглощает инфракрасные лучи во всем диапазоне, за исключением «окна» на длинах волн 8÷13 мкм. Напротив, озон (трехатомный кислород, О>3) поглощает ультрафиолетовые лучи короче 0,36 мкм.
На уровне от 11 до 17 км падение температуры с высотой прекращается и начинается стратосфера — сравнительно спокойная область атмосферы с почти постоянной температурой до высоты 34÷36 км и ростом температуры до уровня ~ 60 км. Этот рост происходит за счет поглощения солнечных ультрафиолетовых лучей слоем озона, о котором подробнее будет сказано ниже. Пограничная область между тропосферой и стратосферой называется тропопаузой.
Выше стратосферы, примерно от уровня озонного пика температуры и до 30–85 км простирается мезосфера — область нового падения температуры с высотой. Мезосферу от стратосферы отделяет узкая область стратопаузы, примерно соответствующей высоте озонного максимума.
Еще выше температура вновь начинает расти. Сюда еще доходит ультрафиолетовое излучение Солнца на длинах волн короче 0,2 мкм, а в этой области спектра находятся полосы поглощения Шумана — Рунге молекулы кислорода (длины волн 1925–1760 A°; 1 A° (ангстрем) = 10>-4 мкм). Еще дальше в сторону коротких длин волн расположена сплошная область поглощения, называемая континуумом Шумана — Рунге (длины волн 1760–1350 А°). Поглощение лучей этих длин волн молекулярным кислородом приводит к нагреванию нижней термосферы — так принято называть область роста температуры выше 85 км.
Но поглощение солнечных ультрафиолетовых лучей приводит и к другому процессу — к диссоциации молекул кислорода на атомы. Этот процесс начинается от высоты 30 км и заканчивается на высотах 120–130 км. Выше весь кислород оказывается диссоциированным, т. е. состоящим из атомов.
С главным компонентом земной атмосферы — азотом положение сложнее. Вероятность (или, как принято говорить, эффективное сечение) диссоциации за счет прямого поглощения солнечных лучей у молекулы азота крайне мала. Диссоциация азота возможна лишь в результате более сложных реакций, например, диссоциативной рекомбинации молекулярных ионов азота. Иначе говоря, сперва происходит ионизация молекулы азота, а потом молекулярный ион рекомбинирует с электроном, распадаясь при этом на два атома азота. Есть еще ряд реакций с участием иона молекулы окиси азота NO>+, в результате которых образуется атомарный азот. Но для осуществления первой из этих реакций — фотоионизации молекулы азота — необходимо излучение с длиной волны менее 1270 А°. Поэтому диссоциация азота начинается выше, чем диссоциация кислорода, а именно, начиная с 200 км, причем концентрация атомов азота начинает превышать концентрацию молекул только на высоте 400 км.
Что же обусловливает продолжающийся рост температуры с высотой в верхней термосфере (выше 150 км)? В основном — опять-таки ультрафиолетовое излучение Солнца. В верхних слоях атмосферы происходит ионизация атомов и молекул, образуются слои заряженных частиц, известные под общим названием ионосфера. Но солнечные лучи, ионизуя атомы и молекулы воздуха, сообщают им дополнительную энергию, переходящую в скорости беспорядочных движений, что и проявляется в увеличении температуры до 2000 градусов на высоте около 1000 км. Заряженные частицы путем столкновений передают энергию нейтральным частицам.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Поиск воды и льда на Марсе. Современное состояние исследований в статье доктора физико-математических наук, сотрудника Института космических исследований (ИКИ РАН) Леонида КСАНФОМАЛИТИ..
СССР втихомолку отказался от «лунной гонки» с Соединенными Штатами и американские астронавты, а не советские космонавты первыми высадились на Луну, хотя в лунной американской программе есть большие сомнения.Мы предлагаем вашему вниманию сенсационный текст, ставящий под сомнение успехи советской космонавтики, по крайней мере, после 1965 года. Зададимся вопросом, были ли мы всегда первыми в космосе или наш приоритет в его освоении закончился в 1965–1970 гг.? Сразу же предупредим всех насчет нашего антипатриотизма — мы публикуем этот текст, хотя сами в силу своих патриотических чувств не совсем с ним согласны, с минимальными купюрами, чтобы все-таки восторжествовала правда.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Астероиды, кометы, метеорные тела, в бесчисленном множестве «населяющие» межпланетное пространство, все больше приковывают внимание ученых и любителей астрономии. Таинственный Икар, знаменитая комета Галлея, тысячи небесных камней, забитых в Землю космическими ударами, потрясающие воображение болиды, огненными шарами проносящиеся по небу, ливни «падающих звезд» — все это связано с малыми телами Солнечной системы. Их описанию и посвящена эта книга.Для школьников 6—10-х классов, любителей астрономии, интересующихся проблемами науки сегодняшнего дня.
Книги известного писателя-фантаста и ученого Айзека Азимова известны во всем мире. Предлагаемое издание познакомит читателя с Азимовым — популяризатором науки. В этой книге рассказано о развитии знаний о космосе с древнейших времен до наших дней, об эволюции Вселенной, о рождении Солнечной системы, возникновении жизни на Земле. Все это рассматривается в тесной связи со сверхновыми. Возможно некоторые оценки и суждения американского писателя не совпадут с общепринятыми в нашей стране, тем не менее книга безусловно будет интересна.