Серебристые облака и их наблюдение - [22]

Шрифт
Интервал

Построив для атмосферы Марса диаграмму, подобную диаграмме И. А. Хвостикова для земной атмосферы (рис. 36), мы сможем убедиться в том, что ниже некоторого уровня образование ледяных облаков в атмосфере Марса невозможно, но выше этого уровня оно может происходить, если удельная концентрация водяного пара в марсианской атмосфере q достигнет необходимого минимального значения, в соответствии с табличкой:



Рис. 36. Диаграмма И. А. Хвостикова для атмосферы Марса.


Что же говорят о присутствии водяного пара в атмосфере Марса спектроскопические измерения? Выход спектральных аппаратов за пределы земной атмосферы, до того путавшей все карты астрономов, позволил получить большую серию измерений содержания водяного пара в вертикальном слое атмосферы Марса. Эту величину принято выражать в микрометрах слоя осаждений воды. В большинстве случаев она равна 5÷20 мкм, хотя иногда (причем чаще всего над полярными шапками) увеличивается до 60÷80 мкм.

Если принять, что удельная влажность атмосферы Марса q одинакова на всех высотах (что может и не соответствовать действительности), то 10 мкм осажденного слоя будут соответствовать q = 4∙10>-4. Таким образом, реальные пределы q = 2∙10>-4÷3∙10>-3. Им соответствуют нижние границы формирования ледяных облаков от 4 до 14 км.

По данным модели атмосферы Марса можно указать и верхние границы возможности образования ледяных облаков: от 58 до 74 км. Как мы сейчас убедимся, они хорошо согласуются с наблюдениями.

Нужно иметь в виду, что модель атмосферы Марса, о которой мы говорили до сих пор, — средняя для всей планеты. В более холодных местах и в зимнее время года условия для образования ледяных облаков улучшаются. Таким образом, нет никакого сомнения, что белые и синие облака; наблюдаемые на Марсе, это действительно ледяные облака, подобные перистым и серебристым облакам земной атмосферы. Вот только никакой границы по высоте мы провести между ними не можем.

Фотометрические наблюдения с космического аппарата «Марс-5» показали на высоте 30÷35 км в утренние часы наличие слоя аэрозоля, состоявшего, по-видимому, из кристалликов льда размером порядка 1 мкм и имевшего оптическую толщину около 0,1. С орбитального аппарата «Викинг-I отмечалось несколько подобных слоев на высотах от 15 до 70 км, толщиной в несколько километров. Такие большие высоты роднят марсианские облака с нашими серебристыми облаками.

Обратимся теперь к атмосфере Венеры. Хорошо известно, что эту планету окружает плотный облачный слой, скрывающий от нас ее поверхность. Благодаря многочисленным успешным полетам наших «Венер» удалось выяснить многие свойства этого слоя. Как было выяснено еще в 1972 г. с помощью фотометра, установленного на «Венере-8», ниже 32 км атмосфера планеты почти прозрачна, от 32 до 49 км лежит слой дымки типа тумана, а между 49 и 67 км расположены три яруса облаков. Нижний и средний ярусы содержат довольно крупные частицы в 5÷8 мкм, состоящие скорее всего из кристалликов солей соляной кислоты, например, FeCl>2, а также из капель соляной кислоты. Верхний ярус, расположенный на высотах 58÷67 км, содержит мелкие сферические частицы размером 2÷3 мкм, по своим преломляющим свойствам напоминающие 80-процентный раствор серной кислоты. Еще выше расположена надоблачная дымка, которая простирается до высоты 80 км.

Но уже давно визуальные наблюдения и фотографии Венеры выявляли вблизи терминатора планеты яркие детали, порою выдававшиеся за терминатор. Это могли быть только облака, расположенные выше уровня границы основного облачного слоя и освещенные Солнцем. Из чего они состоят и как образуются? Здесь наблюдательный материал гораздо беднее, чем в случае Марса, и мы пока ничего не можем сказать о природе и составе этих самых высоких облаков Венеры.

Могут ли они состоять из продуктов конденсации водяного пара, т. е. быть аналогами наших серебристых облаков? Пока мы не можем дать прямой ответ на этот вопрос. Средняя удельная концентрация водяного пара в атмосфере Венеры по различным оценкам составляет от 10 до 5∙10>-3. Температура стратомезосферы Венеры не опускается ниже 200 К (на уровне верхней границы она держится между 232 и 244 К). Но отдельные похолодания верхней атмосферы Венеры вполне возможны, а это может привести к формированию облаков из кристалликов льда над основным облачным слоем. Так это или нет, покажут будущие исследования.

Мы обратили внимание читателя на возможность образования облаков типа серебристых в атмосферах других планет, чтобы подчеркнуть важность их всестороннего исследования в нашей атмосфере. Это поможет выяснить общие закономерности облакообразования при разных условиях, в атмосферах разного состава и плотности, с различной динамикой, температурным режимом и фотохимическими превращениями.

Глава II

НАБЛЮДЕНИЯ СЕРЕБРИСТЫХ ОБЛАКОВ

§ 10. Задачи наблюдений серебристых облаков

Наблюдения серебристых облаков несложны и доступны любому любителю астрономии. Хотя серебристые облака плавают в верхних слоях земной атмосферы и не являются, строго говоря, астрономическим объектом, внимание, уделяемое им на протяжении столетия астрономами и любителями астрономии, не случайно.


Еще от автора Виталий Александрович Бронштэн
Планета Марс

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Рекомендуем почитать
Верхом на ракете. Возмутительные истории астронавта шаттла

Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.


Есть ли Бог

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Сферы света [Звезды]

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Большой космический клуб. Часть 1

Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.


Пятьдесят лет в космической баллистике

Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.