Самые знаменитые головоломки мира - [64]
В нашем случае свинья находится от человека на расстоянии 250 ярдов, а скорости человека и свиньи относятся как 4: 3. Поэтому если бы оба они бежали вперед по прямой, то человек до того, как поймает свинью, пробежал бы 1000 ярдов. Если бы они бежали навстречу друг другу, то человек пробежал бы 4/7 от 250 ярдов, то есть 142 6/7 ярда. Сложив эти два расстояния и разделив их на 2, мы получим 571 3/7 ярда. Это и есть искомое расстояние, которое пробежал человек. Поскольку скорость свиньи составляет 3/4 скорости человека, то она проделала за то же время 428 4/7 ярда.
[Если бы свинья бежала с той же скоростью, что и человек, или быстрее, то, пользуясь правилом Лойда, можно легко показать, что Тому никогда не удалось бы схватить ее. Но если скорость человека превосходит скорость животного, то свинью можно схватить всегда. Путь человека дает один из простейших примеров так называемой «линии погони», изучение которой составляет интересный раздел того, что можно было бы назвать «развлекательным анализом».[31] – М. Г.]
146. Сорок лет назад Бидди было 18 лет, а сейчас ей 58.
147. У Джона и Мэри должно было быть 300 цыплят, которым хватало корма на 60 дней.
148. Мячик пройдет расстояние в 218,77777… футов, то есть в 218 футов 9 >1/>3 дюйма.
149. На рисунке показан путь, при котором Клэнси сможет пройти мимо всех домов.
150. Существует бесконечно много способов, позволяющих разделить греческий крест на части, из которых удается сложить правильный квадрат. На рис. 1 показан один из них. Самое поразительное что если вы проведете любые два прямых разреза, параллельные данным, то результат не изменится. Из получившихся при этом четырех частей всегда можно сложить квадрат!
Ответы на следующие вопросы вы видите на рис. 2 и 3.
151. Если леди купила x шнурков, то она должна была купить 4x коробочек с булавками и 8x: платков. Сумма квадратов этих величин равна 3,24 доллара, откуда x = 2. Таким образом, леди купила 2 шнурка, 8 коробочек с булавками и 16 платков.
152. Бутылку и щетку можно переставить за 17 ходов, действуя следующим образом:
1) бутылка,
2) щетка,
3) утюг,
4) бутылка,
5) перечница,
6) мышеловка,
7) бутылка,
8) утюг,
9) щетка,
10) перечница,
11) утюг,
12) бутылка,
13) мышеловка,
14) утюг,
15) перечница,
16) щетка,
17) бутылка.
153. Поскольку колеса на внешней стороне круга вращаются вдвое быстрее колес на внутренней стороне, длина внешней окружности должна вдвое превышать длину внутренней окружности. Следовательно, 5 футов между внутренними и внешними колесами должны равняться половине радиуса внешней окружности. Другими словами, диаметр внешней окружности равен 20 футам, а ее длина составляет 20π, или около 62,832 фута.
154. Мисс Покахонт 24 года, а маленькому Капитану Джону 3 года.
155. Покупатель приобрел бочки с маслом в 13 и 15 галлонов, заплатив по 50 центов за галлон, и бочки с уксусом в 8, 17 и 31 галлон, заплатив по 25 центов за галлон. При этом осталась бочка в 19 галлонов, которая может содержать либо масло, либо уксус.
156. Каждая следующая цена составляет >2/>5 предыдущей, так что после очередного снижения шляпа будет продаваться за 51,2 цента.
157. На верхнем рисунке показаны пути пяти стражей, а на нижнем отмечено, как тюремщик добирался до черной камеры, сделав всего лишь 16 поворотов.
158. Пять мальчиков вылетят, если вместо числа 13 взять 14, а счет начинать по-прежнему с девочки без шляпки, двигаясь по часовой стрелке.
159.Ответ ясен из рисунка.
160. [Пусть х – стоимость купленной шляпы Рубена, а у – стоимость его пиджака. Шляпка, купленная Синтией, также стоит у, а ее платье х – 1. Мы знаем, что х + у = 15. Поэтому если 15 долларов, которые они истратили на шляпы, разделить на две части, из которых одна в полтора раза больше другой, то мы получим, что новые цены шляп составляют соответственно 6 и 9 долларов. Исходя из условий задачи, мы можем составить следующее уравнение:
9 + х – 1 = 6 + 15 – x.
Отсюда х = 6,5 доллара – цена, которую Рубен заплатил за шляпу. Значит, за пиджак он заплатил 8,5 доллара, а Синтия заплатила 8,5 доллара за шляпу и 5,5 доллара за платье. Общая сумма, истраченная парой, составляет 29 долларов. – М. Г.]
161. В стаде мисс Ку-Ку было 8 овец. Изгородь из 8 столбов, расположенных в виде квадрата, ограничивает поле той же площади, что и продолговатая изгородь из 10 столбов, у которой на длинной стороне находится 5, а на короткой 2 столба.
162. Фидо 10 лет, а сестре 30.
163. Хорошее правило, которое может пригодиться при обращении с «жульническими» весами рычажного типа, состоит в следующем. Взвесьте интересующий вас предмет сначала на одной чаше весов, а затем на другой, перемножьте полученные результаты и извлеките из произведения квадратный корень; при этом вы получите истинный вес предмета.
Зная, что пирамидка весит 1 унцию, мы в результате первого взвешивания устанавливаем, что кубик вееит 3/8 унции. Второе взвешивание дает для него значение в 6 унций. Далее, 6 х 3/8 = 18/8 = 9/4. Квадратный корень из этого числа равен 3/2. Следовательно, кубик весит 1 1/2 унции, и на нормальных весах 8 кубиков уравновесили бы 12 пирамидок.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.