Самые знаменитые головоломки мира - [57]

Шрифт
Интервал


72. Ребро большого ящика должно иметь в длину 13,856 дюйма, а ребро маленького ящика – 6,928 дюйма. Суммарная длина ящиков составляет 20,784 дюйма, то есть 1,732 фута, так что если брать по 5 долларов за погонный фут, то цена составит 8,66 доллара. Оба ящика вместе содержат чуть больше 2992 кубических дюймов, то есть 1,732 кубического фута. При стоимости провоза в 5 долларов за кубический фут цена составит 8,66 доллара.


73. Эту маленькую перестановку четырех пустых и четырех полных бокалов легко запомнить: один длинный ход, два коротких, затем снова один длинный ход. Сначала передвиньте бокалы 2 и 3 на дальний конец, затем заполните образовавшуюся брешь бокалами 5 и 6. Заполните новую брешь бокалами 8 и 2 и, наконец, переместите бокалы 1 и 5.


74. Тому, кто не сумел выбраться из бесконечного водоворота чисел, мы скажем, что кратчайший выход из леса совершается с помощью любопытного движения туда и обратно вдоль единственной диагонали.

Ходы таковы: в направлении ЮЗ – на 4, в направлении ЮЗ – на 6, в направлении СВ – на 6, в направлении СВ – на 2, в направлении СВ – на 5, в направлении ЮЗ – на 4, в направлении ЮЗ – на 4, в направлении ЮЗ – на 4 и затем краткий рывок на СЗ к свободе!


75. Все участники пикника сумеют переправиться через реку за 17 рейсов:

1) переправляются мистер и миссис Синч;

2) мистер Синч возвращается один обратно;

3) мистер Синч берет с собой вторую леди;

4) мистер Синч возвращается со своей женой;

5) мистер Синч берет с собой еще одну леди;

6) мистер Синч возвращается один;

7) два джентльмена переправляются на другой берег;

8) возвращается джентльмен с женой;

9) переправляются мистер и миссис Синч;

10) возвращается джентльмен с женой;

11) два джентльмена переправляются на другой берег;

12) мистер Синч возвращается один;

13) мистер Синч перевозит леди;

14) мистер и миссис Синч возвращаются;

15) мистер Синч перевозит леди;

16) мистер Синч возвращается один;

17) мистер Синч переправляется вместе с женой.


76. На приведенном рисунке показано, каким образом квадратное одеяло 13 х 13 можно разрезать на II малых квадратов – наименьшее число квадратных лоскутов, на которые удается разрезать одеяло, не нарушая его «клетчатую структуру». Эта головоломка на самом деле оказалась трудной, и те, кому удалось найти правильный ответ, заметили, вероятно, что здесь применяется некий математический принцип, имеющий отношение к квадратным корням.


77. Игру можно закончить за 26 ударов, используя прогон в 150 ярдов и подход в 125 ярдов:


150 ярдов: 1 прогон;

300 ярдов: 2 прогона;

250 ярдов: 2 подхода;

325 ярдов: 3 прогона и 1 обратный подход;

275 ярдов: 1 прогон и 1 подход;

350 ярдов: 4 подхода и 1 обратный прогон;

225 ярдов: 3 подхода и 1 обратный прогон;

400 ярдов: 1 прогон и 2 подхода;

425 ярдов: 2 прогона и 1 подход.


78. Ответ ясен из рисунка.


79. Есть много чисто математических способов решения этой задачи, но ради простоты я посоветовал бы вычесть половину длины диагонали из 1/>4 периметра флага. Периметр составляет ровно 25 футов, а длина диагонали равна 9,01388. Значит, мы должны из 6,25 вычесть 4,50694, получив 1,74306 фута – искомую толщину креста.


80. Если перекупщик, взвешивая шерсть, на каждый фунт получил лишнюю унцию, то в его «фунте» содержалось 17 унций. Когда же он продавал шерсть, то в его новом «фунте» оказывалось 15 унций, а излишек шерсти составлял 2 унции. Если эти две лишние унции продавались по той же самой цене, причем дополнительный доход от такой жульнической операции составил 25 долларов, то ясно, что эти 25 долларов относятся ко всей сумме, полученной от продажи шерсти, по 15 унций на 1 фунт, как 2 к 15. Поскольку на 1/15 приходится 12,5 доллара, то вся сумма, или 15/15, составляет 187,5 доллара. Именно такую сумму заплатил бы перекупщик, если бы он не получал никаких комиссионных.

Однако мы находим, что, взимая по 2 % с продавца и торговца, он получил соответственно 3,75 и 4,25 доллара, что составило 8 долларов комиссионных в дополнение к 25 долларам жульнического дохода. Далее, если бы он действовал честно, то платил бы за 17 унций, что дало бы (если говорить точно) в сумме 199,21875 доллара. Следовательно, его комиссионные на всей сделке составили бы только 7,96875 доллара, так что из-за своего жульничества он получил дополнительно 3 1/8 цента. Поскольку было сказано, что с помощью жульничества он получил лишних ровно 25 долларов, то мы должны уменьшить сумму в 187,5 доллара, чтобы жульнический доход составил точно 25 долларов.

Далее, поскольку 3 1/8 цента составляют ровно 1/801 часть от 25,03125 доллара, то мы должны уменьшить 187,5 доллара на 1/801 часть этой суммы, что даст 187,27 доллара. Поэтому он получил жульнический доход в 25 долларов и 0,0006 цента. Ради еще большей точности я бы предположил, что продавцу шерсти перекупщик заплатил 187,2659176029973125 доллара минус 2 % комиссионных, или 3,745 доллара.


81. Раскусить этот старый орешек не удастся, если не знать, что в Англии и США для измерения веса большинства товаров используется коммерческая система мер, тогда как при взвешивании драгоценных металлов там пользуются тройской системой. Поэтому вес перьев определяется по первой, а вес золота – по второй системе.


Рекомендуем почитать
Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.


Простая одержимость: Бернхард Риман и величайшая нерешенная проблема в математике

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.