Ритм Вселенной. Как из хаоса возникает порядок - [7]
Натуральный задатчик ритма работы сердца представляет собой подлинное чудо эволюции – возможно, самый впечатляющий осциллятор из когда-либо созданных природой. Кластер, состоящий из примерно 10 тысяч клеток и называемый синусно-предсердным узлом, вырабатывает электрические импульсы, которые задают ритм работы сердца в целом. Синусно-предсердный узел должен действовать чрезвычайно надежно, минута за минутой, обеспечивая примерно три миллиарда сокращений сердца за все время жизни человека. В отличие от большинства клеток сердца, клетки-ритмоводители вырабатывают электрические импульсы автоматически; если их изолировать в чашке Петри, то напряжение генерируемых ими импульсов ритмично повышается и снижается.
Все это вызывает законный вопрос: зачем нужно так много этих клеток, если даже одной клетки вполне достаточно для того, чтобы справиться с данной работой? Возможно, это объясняется тем, что наличие единственного задатчика ритма не позволяет получить достаточно надежную структуру: лидер может начать неправильно функционировать или даже прекратить существование. Вместо ненадежной структуры с единственным лидером природа выработала более надежную, «демократичную» систему, в которой тысячи клеток коллективно задают нужный ритм. Разумеется, такая демократия порождает собственные проблемы: клетки должны каким-то образом координировать свои действия; если же они будут посылать конфликтующие между собой сигналы, сердце выйдет из строя. Пескина интересовал следующий вопрос: как всем этим клеткам удается – в отсутствие лидера или каких-либо команд со стороны – действовать столь синхронно?
Обратите внимание, как похож этот вопрос на поставленный выше вопрос о светлячках. В том и другом случае речь идет о больших популяциях ритмичных объектов, вырабатывающих внезапные импульсы, которые задают ритмы для других членов группы, убыстряя или замедляя их в соответствии с определенными правилами. В обоих случаях синхронизм представляется неизбежным. Задача заключается в том, чтобы объяснить, почему это должно быть именно так, а не иначе.
В 1975 г. Пескин изучил этот вопрос в рамках некой упрощенной модели. Каждая из клеток-ритмоводителей рассматривается как электрическая цепь, генерирующая импульсы (осциллятор) и эквивалентная конденсатору, подключенному параллельно резистору. (Конденсатор – это прибор, способный накапливать и хранить электрический заряд; в данном случае он играет роль, подобную той, которую играет мембрана клетки; резистор обеспечивает путь для вытекания электрического тока из клетки, аналогично так называемым каналам утечки в мембране.) Постоянный входной ток заставляет конденсатор заряжаться, что приводит к росту напряжения на нем. Когда напряжение на конденсаторе повышается, величина тока, стекающего через резистор, растет, в результате чего скорость повышения замедляется. Когда напряжение достигает некого порога, конденсатор разряжается и напряжение на нем мгновенно падает до нуля; такая модель имитирует запуск клетки-ритмоводителя и ее последующее возвращение к исходному состоянию. Затем напряжение снова начинает повышаться, и описанный выше цикл повторяется. Рассматриваемый как функция времени, такой цикл напряжения состоит из двух частей: плавный подъем вдоль кривой заряда (график в виде половины дуги, поднимающейся, но с постепенным замедлением роста), за которым следует практически вертикальное падение с возвратом к исходному состоянию.
Затем Пескин представил такой задатчик ритма сердца в виде огромной совокупности этих математических осцилляторов. Для простоты он предположил, что все осцилляторы идентичны (и, таким образом, характеризуются одной и той же кривой заряда), что каждый осциллятор связан в одинаковой степени со всеми остальными осцилляторами и что осцилляторы влияют друг на друга только в состоянии запуска. В частности, когда какой-либо осциллятор запускается, он мгновенно повышает напряжения всех остальных осцилляторов на некую фиксированную величину. Если напряжение какой-либо клетки превышает пороговое значение, она сразу же запускается.
Сложность и запутанность этой проблемы обусловлена тем, что в любой данный момент времени разные осцилляторы, как правило, пребывают на разных стадиях рассматриваемого нами цикла: некоторые из них находятся буквально на грани запуска, другие уже успели далеко продвинуться по кривой заряда, тогда как третьи могут приближаться к исходному состоянию. Как только ведущий осциллятор достигнет порогового значения, он запускается и проталкивает каждый из остальных осцилляторов в разные позиции вдоль кривой заряда. Результаты такого запуска имеют разноплановый характер: осцилляторы, которые были близки к пороговому значению, проталкиваются ближе к запускающемуся осциллятору, но те, которые приближаются к исходному состоянию, выбиваются из фазы. Иными словами, отдельно взятый запуск оказывает синхронизирующее воздействие на некоторые осцилляторы и рассинхронизирующее воздействие на другие осцилляторы. Долгосрочные последствия всех этих перестроек невозможно уяснить, опираясь лишь на здравый смысл.
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.
Удовольствие от Х. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире / Стивен Строгац; пер. с англ. (Steven Strogatz. The Joy of X. A Guided Tour of Math, from One to Infinity) — М.: Манн, Иванов и Фербер, 2014.Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.