Ритм Вселенной. Как из хаоса возникает порядок - [13]
Идея о теоретическом существовании «плохих» точек принадлежала Ренни, хотя мы, разумеется, были заинтересованы в «хороших» точках. Стратегия Ренни напоминала концепцию отрицательного пространства, к которой прибегают художники: чтобы лучше уяснить интересующий вас объект, постарайтесь уяснить пространство, окружающее этот объект. В частности, Ренни придумал, как доказать, что «плохие» точки занимают нулевую площадь.
Чтобы составить некоторое представление о его доказательстве, сосредоточимся на наихудших из «плохих» точек, которые я буду называть «ужасными». Эти точки – самые непокорные в своем стремлении воспрепятствовать достижению синхронизма: они вообще не поддаются поглощениям. Когда система начинает свою работу с какой-либо ужасной точки, никакая из пар осцилляторов (и тем более не вся популяция осцилляторов) не сможет синхронизироваться.
Чтобы понять, почему ужасные точки не могут занимать площадь больше нулевой, вообразите все эти точки в виде некой совокупности и проанализируйте, что произойдет, когда мы применим наше преобразование ко всем точкам в такой совокупности. Каждая ужасная точка перескочит в какое-то другое место, но после такого преобразования она все равно останется ужасной. Это звучит почти как тавтология: если какая-либо точка никогда не приводит к поглощению, то после одной итерации нашего преобразования она все равно никогда не приведет к поглощению. Следовательно, новая точка также является ужасной. Поскольку первоначальная совокупность включала все ужасные точки (по определению), эта новая точка должна была бы где-то здесь появиться, чтобы она могла исполнить роль начальной.
Наш вывод заключается в том, что преобразованная совокупность находится полностью внутри первоначальной совокупности. Могу предложить более наглядную аналогию: это похоже на хорошо известные вам фотографии «до» и «после», используемые в рекламе всевозможных диет для похудения. Преобразованная совокупность – похудевшая «после» – фотография – полностью содержится внутри толстой «до» – фотографии (как в рекламе диет для похудения).
До сих пор в нашем доказательстве не использовалась какая-либо информация о форме кривой заряда или величине «толчков». Когда мы в конечном счете учтем эти детали, мы придем к выводу, который, на первый взгляд, может показаться парадоксальным, хотя на самом деле он является решающим доводом в нашем доказательстве. Нам с Ренни удалось доказать, что преобразование из «до» в «после» действует подобно функции увеличения масштаба в фотокопировальном аппарате. Любая совокупность точек, которую вы подаете на вход нашего преобразования, на его выходе оказывается увеличенной в том смысле, что ее суммарная площадь оказывается умноженной на коэффициент, больший 1. Неважно, какую именно совокупность вы выберете (как неважно и то, какое изображение вы поместите в фотокопировальный аппарат): увеличится площадь всех совокупностей. В частности, увеличится площадь совокупности ужасных точек. Но погодите, это означает, что совокупность ужасных точек становится толще, а не тоньше. Но это, похоже, противоречит тому, о чем мы говорили выше. Если быть более точным, проблема в том, что преобразованная версия совокупности ужасных точек должна находиться внутри исходной совокупности при том, что ее площадь также должна увеличиться, что кажется невозможным. Единственным условием, при котором эти два вывода могут быть совместимы, является нулевая площадь исходной совокупности (фотография «до» должна представлять собой изображение тонкого прута). В таком случае никакого противоречия нет: при умножении на число, большее 1, площадь исходной совокупности останется нулевой, поэтому преобразованная совокупность может поместиться внутри исходной совокупности. Но это именно то, что мы хотели продемонстрировать: ужасные точки занимают нулевую площадь. Именно поэтому вам никогда не удастся выбрать их, если вы будете выбирать начальное условие случайным образом. Не сможете вы выбрать и какие-либо другие «плохие» точки. Именно поэтому наступление синхронизма в такой модели является неизбежным.
Та же аргументация относится к любому другому количеству осцилляторов – с той небольшой поправкой, что в случае четырех или большего количества осцилляторов площадь нужно заменить на объем или гиперобъем. В любом случае вероятность начать процесс с плохой точки всегда остается равной нулю. Следовательно, Пескин был прав: в его модели идентичных импульсно-связанных осцилляторов каждый из осцилляторов в конечном счете запускается в унисон с остальными.
Конструируя это доказательство, мы пришли к выводу, что предположение Пескина об утечках было очень важным: в противном случае преобразование из «до» в «после» не расширяет площадь и все доказательство разваливается. Более того, оно должно развалиться, поскольку наша теорема без такого предположения недействительна. Если кривая заряда загибалась вверх, а не вниз – если напряжение растет все быстрее по мере приближения к пороговому значению, – то наше моделирование показывало, что рассматриваемая популяция осцилляторов вовсе не обязательно синхронизируется. Осцилляторы могут зациклиться в случайной картине хаотических запусков.
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.
Удовольствие от Х. Увлекательное путешествие в мир математики от одного из лучших преподавателей в мире / Стивен Строгац; пер. с англ. (Steven Strogatz. The Joy of X. A Guided Tour of Math, from One to Infinity) — М.: Манн, Иванов и Фербер, 2014.Эта книга способна в корне изменить ваше отношение к математике. Она состоит из коротких глав, в каждой из которых вы откроете для себя что-то новое. Вы узнаете насколько полезны числа для изучения окружающего мира, поймете, в чем прелесть геометрии, познакомитесь с изяществом интегральных исчислений, убедитесь в важности статистики и соприкоснетесь с бесконечностью.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.