Революция в микромире. Планк. Квантовая теория - [25]

Шрифт
Интервал


Планк говорит об Эйнштейне, хоть и не упоминает его. В приветственной речи при вступлении Эйнштейна в Прусскую академию наук в 1913 году Планк дает ему более дружелюбную и, ввиду будущих открытий, забавную характеристику:


«То, что он в своих умозаключениях иногда, возможно, уходит слишком далеко, как, например, в своей гипотезе световых квантов, вряд ли заслуживает серьезного упрека: не отваживаясь когда-то на риск, даже в самых точных науках о природе невозможно добиться ничего подлинно нового».


Но так же удивительно и то, каким образом в конце концов весы склонились в пользу Эйнштейна. Между 1914и 1915 годами американский физик Роберт Милликен (1868-1953) представил Американской физической ассоциации свои результаты многолетнего экспериментального исследования фотоэффекта. Милликен публично заявлял, что одной из целей этого исследования было опровержение квантовой гипотезы Эйнштейна. Однако в статье с полным отчетом об эксперименте, опубликованной в 1916 году в журнале The Physical Review, можно прочесть:


«В 1905 году Эйнштейн установил первое отношение между фотоэффектом и квантовой теорией, выдвинув смелую, если не сказать несуразную [Милликен использует английское слово reckless] гипотезу о частице света с энергией Αν, энергия которой передается и поглощается электроном. Гипотезу можно квалифицировать [...] как несуразную [...], потому что локализованное в пространстве электромагнитное возмущение нарушает саму концепцию электромагнитного излучения».


Однако статья американского физика завершается фразой, не оставляющей сомнений:


«Уравнение фотоэффекта Эйнштейна было проверено с помощью самых точных тестов и, как нам кажется, во всех случаях соответствовало полученным результатам».


Роберт Милликен и честность ученого

В своем знаменитом эксперименте Милликен анализировал движение мельчайших заряженных капелек масла и сделал вывод о дискретности электрического заряда капель и о его элементарной величине, равной заряду электрона. Есть основания полагать, что Милликен использовал в расчетах лишь определенное количество капель и не применял другие вещества, которые считал способными вызвать погрешность эксперимента. Этот факт был использован критиками: с одной стороны, они ставили под сомнение честность Милликена как ученого, а с другой — видели в этом подтверждение тезиса, согласно которому ученые манипулируют

результатами экспериментов, подгоняя их под теоретические представления. Но никто из этих критиков не упоминает о фотоэффекте. Своими экспериментами американский ученый пытался опровергнуть теорию Эйнштейна. Сам Милликен говорил на этот счет: «Я потратил десять лет моей жизни на проверку этого эйнштейновского уравнения 1905 года и вопреки всем моим ожиданиям вынужден был в 1915 году безоговорочно признать, что оно экспериментально подтверждено, несмотря на его несуразность» (Милликен имел в виду несуразность квантовой теории). Случай с фотоэффектом подтверждает высокую научную честность Милликена и его готовность принять факты, даже когда они противоречат его идеям.


Нобелевская премия за новую физику

Планк выдвигался на Нобелевскую премию в области физики в 1907 и в 1908 годах. Ни в тот, ни в другой раз он не получил награды. В 1908 году он был близок к премии благодаря поддержке великого шведского физика и химика Сванте Аррениуса (1859-1927), который считал, что Нобелевская премия должна признать успехи атомной теории материи, а Планк занимал центральное положение в этой сфере. Но в комитете возникла дискуссия о том, должен ли Вин разделить премию с Планком, так как именно закон Вина стал определяющим для работы Планка. Кроме того, закон Планка, хоть и был подтвержден экспериментально, не имел теоретической базы. В апреле 1908 года Лоренц настаивал, что существующие законы физики не приводят к формуле Планка. Лоренц на тот момент был ведущим специалистом по теоретической физике с мировым именем, и его авторитет заставил комитет сомневаться.

Через десять лет доверие к квантовой гипотезе возросло, и в 1919 году Планк получил Нобелевскую премию в области физики за 1918 год (в годы войны премии не вручались). Нобелевский комитет признавал, что Планк был номинирован большее количество раз, чем другие кандидаты. Ведущие физики-теоретики тех лет — Лоренц, Эйнштейн, Борн, Вин, Зоммерфельд — поддержали его кандидатуру. Сейчас кажется логичным, что Планк первым из основателей квантовой теории был удостоен Нобелевской премии. Затем премии были присуждены Эйнштейну и Бору, позже — другим теоретикам квантовой физики. Возможно, в этом списке, включающем имена Гейзенберга, Шрёдингера, Дирака, Паули и Борна, не хватает имени Арнольда Зоммерфельда (1868-1951).

В 1919 году Нобелевскую премию получил и Йоханнес Штарк (1874-1957). Этот ученый симпатизировал радикальным правым политическим партиям, а впоследствии открыто сотрудничал с нацистским режимом. В конце Второй мировой войны он был приговорен к четырем годам трудового лагеря.

Планк и Штарк отправились в Стокгольм в компании еще одного великого ученого той эпохи — химика Фрица Габера (1868-1934), получившего Нобелевскую премию в области химии годом раньше. Габер открыл в 1909 году процесс синтеза аммиака из водорода и азота. Это позволило Германии организовать производство нитратов для удобрений, а во время войны синтез аммиака применялся для изготовления взрывчатых веществ. Габер также играл важную роль в разработке военных технологий в ходе Первой мировой войны, так как сознательно занимался производством отравляющих газов.


Рекомендуем почитать
Знание-сила, 2003 № 10 (916)

Ежемесячный научно-популярный и научно-художественный журнал.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.