Революция в микромире. Планк. Квантовая теория - [14]

Шрифт
Интервал

Так как функция Кирхгофа не зависит от природы вещества, с которым взаимодействует излучение, Планк решил, что на стенках полости можно расположить осцилляторы, резонирующие на всех возможных частотах (см. схему), которые должны быть достаточно простыми, чтобы рассчитать их динамику. Если эксперимент удастся, в конце концов специфические характеристики осцилляторов не будут проявляться, останется только их частота.

Количество энергии, излучаемой и поглощаемой осциллятором такого типа, могло быть рассчитано относительно легко благодаря работам Генриха Герца по электромагнетизму, написанным в конце 1880-х. Планк подтвердил, что в состоянии равновесия, когда осциллятор поглощает столько же энергии, сколько получает за единицу времени, средняя энергия u>v на единицу объема и единицу частоты электромагнитного поля, находящегося в полости на заданной частоте n, связана со средней механической энергией осциллятора U>v соотношением:

u>v = 8πv²/c³∙U>v

где с — скорость света. Под величиной u>v понимается плотность энергии на единицу частоты, или спектральная плотность энергии. Энергия, испускаемая полостью K>v, может быть вычислена в лаборатории пропорционально вышеуказанной величине по формуле:

K>v = c/4∙u>v.

На стенках полости, которая для Планка стала моделью черного тела, были установлены осцилляторы с электрическим зарядом. Излучение испускалось через маленькое отверстие.

К радости Планка, в отношении между энергией осциллятора и электромагнитного поля физические характеристики осциллятора, а также его заряд или масса не учтены. В уравнении присутствуют только два элемента — частота и скорость света, которая является универсальной константой. В начале 1897 года Планк думал, что излучение его осцилляторов может быть шагом к пониманию электродинамики необратимости.


Волновые опыты Герца

Немецкий ученый Генрих Герц, доказывая справедливость теории Максвелла, создал в своей лаборатории электромагнитные волны, длина которых значительно превышала световую волну, и доказал, что эти волны имеют сходные со светом характеристики: они распространяются при такой же скорости по прямой линии, отражаются и могут поляризоваться, как и свет. Для генерирования волн Герц использовал колебательный контур: два куска провода, на концах которого — проводящие шарики.

Из-за большой разницы потенциалов шариков с помощью генератора или батарейки, соединенных с индукционной катушкой, достигалось короткое замыкание, при котором между концами провода проскакивала искра, а шарики соединялись с помощью электричества. Далее наблюдались колебания заряда, идущего и возвращающегося от одного шарика к другому. Осциллятор генерировал много волн, их линии поля были похожи на поле от электрического осциллятора, как показано на схеме.

Герц для решения уравнений Максвелла создал теоретическую модель, соответствующую осциллятору. С ее помощью он смог рассчитать линии поля, показанные на схеме, и подтвердить их соответствие наблюдениям. Макс Планк в своих исследованиях излучения черного тела использовал выражение энергии, испускаемой осциллятором Герца.


Но в середине 1897 года Больцман представил в Прусской академии наук короткий доклад, в котором критиковал эту линию исследования. В основе его критики лежало заявление, что уравнения Максвелла так же обратимы, как ньютоновские. Все решения этих уравнений одинаковы, независимо от того, в какую сторону движется время. Планку нужно было искать необратимость в другом месте, и Больцман указывает ему, где: для определения вероятного состояния излучения можно воспользоваться теорией газов.

Таким образом, Больцман рекомендовал Планку воспользоваться его молекулярной теорией теплоты и вероятностной интерпретацией второго начала термодинамики.

Планк воспринял критику Больцмана довольно спокойно, тем более что обоснованных возражений у него не было. Он изменил курс исследований и вернулся к энтропии — теме, которой владел прекрасно. Соотношение между энергией осцилляторов и энергией излучения нельзя не учитывать.

Игра стоила бы свеч, если бы было возможным выяснить, как соотносится энергия излучения с его частотой и температурой. Но ни Планк, ни кто-либо другой не знал, как определяется энтропия излучения. Обнаруженное соотношение между энергией осцилляторов и энергией излучения позволяло забыть о последней и сфокусироваться на энтропии осцилляторов. Это стало следующей остановкой на пути Планка, и с 1897 по 1900 год он занимался указанными вопросами, а также глубоко изучал работы Больцмана.


На сцену выходит Вин

Вильгельм Вин (1864-1928) родился в Восточной Пруссии и был немного моложе Планка. Он работал ассистентом Гельмгольца, а потом перешел в Имперский физико-технологический институт, находящийся неподалеку от Берлина. В конце столетия он заинтересовался проблемой излучения черного тела. Вин сделал два открытия, внесшие неоценимый вклад в разрешение проблемы, за что в 1911 году был удостоен Нобелевской премии в области физики.

Во-первых, Вин доказал, что интенсивность излучения, испускаемого черным телом, K>v, зависит не только от частоты или только от температуры, а от комбинации обеих. Это заключение сегодня называется законом смещения Вина. Согласно этому закону по мере увеличения температуры преобладает коротковолновое излучение. Таким образом, Вин дал теоретическое обоснование феномену, который можно наблюдать в обычных условиях: свечение раскаленных тел переходит от красного к другому краю спектра по мере нагревания. В таблице ниже показана длина волны, которая обеспечивает максимальное излучение при разных температурах, от абсолютного нуля до температуры поверхности звезд.


Рекомендуем почитать
Знание-сила, 2003 № 10 (916)

Ежемесячный научно-популярный и научно-художественный журнал.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.