Революция в физике - [20]
Успехи статистической механики научили физиков рассматривать некоторые законы природы как статистические. Именно потому, что в газах происходит колоссальное число механических элементарных процессов, давление или энтропия газов подчиняется простым законам. Законы термодинамики имеют характер вероятностных законов, представляющих собой статистические результаты явлений атомного масштаба, которые невозможно изучать непосредственно и анализировать детально. Строгие динамические законы, абсолютный детерминизм механических явлений ослабляются в атомном мире, где они становятся ненаблюдаемыми и где проявляются и могут наблюдаться в нашем масштабе только лишь их средние характеристики. Таким образом, физики заметили, что во многих случаях наблюдаемым законам подчиняются лишь средние значения величин. Поэтому ученые занялись изучением вероятностных законов. Волновая механика развила это направление и показала, что наблюдаемые законы, которым подчиняются элементарные частицы, также носят вероятностный характер.
3. Дискретная природа электричества. Электроны и протоны
Из только что сказанного видно, что в физике, как и в химии, гипотеза, согласно которой все тела состоят из молекул, представляющих собой в свою очередь комбинации различных атомов, оказалась чрезвычайно плодотворной и получила блестящие экспериментальные подтверждения. Перед учеными встала новая задача – узнать, из чего состоят сами атомы, и понять, чем атомы различных элементов отличаются друг от друга. Эту трудную проблему помогло разрешить дальнейшее развитие наших знаний о природе электричества.
На заре изучения электрических явлений казалось вполне естественным представлять электричество в виде некоторой особой жидкости и рассматривать, например, электрический ток, протекающий по металлической проволоке, как поток электрической жидкости, текущей вдоль этой проволоки. Однако, как было известно с давних пор, существует два вида электричества: положительное и отрицательное. Следовательно, необходимо было предположить существование двух различных видов электрической жидкости: положительной и отрицательной. Можно было предположить две кардинально отличные модели этих жидкостей: либо представить ее в виде некоей непрерывной субстанции, заполняющей электрически заряженные тела, либо, наоборот, считать, что она состоит из множества мельчайших электрических частиц, каждая из которых представляет собой элементарную частицу электричества. Результат эксперимента был в пользу второй модели. Около сорока лет назад было экспериментально показано, что отрицательное электричество образовано из мельчайших одинаковых частиц, обладающих чрезвычайно малыми значениями массы и заряда. Эти частицы отрицательного электричества получили название электронов. Как известно, впервые электроны были обнаружены в свободном состоянии, вне заряженных тел, в виде так называемых катодных лучей, возникающих в разрядной трубке. Затем их удалось обнаружить в явлениях фотоэффекта и термоэмиссии сильно разогретых тел. Открытие радиоактивности позволило получить новый источник электронов, поскольку большинство радиоактивных веществ спонтанно излучают бета-лучи, представляющие собой не что иное, как электроны, движущиеся с очень большими скоростями. Как следует из многочисленных экспериментов, все электроны, какого бы происхождения они ни были, несут всегда один и тот же чрезвычайно малый отрицательный электрический заряд. Изучая характер движения электрона в пустоте, можно установить, что он движется точно так же, как должна была бы двигаться, согласно законам механики, маленькая заряженная частица. Исследование характера движения электрона в электрическом и магнитном полях позволило измерить величину его заряда и массы, которые очень малы.
Труднее было получить доказательства корпускулярной структуры положительного электричества. Однако позже физики убедились в том, что положительное электричество в конечном счете тоже должно рассматриваться как состоящее из отдельных совершенно одинаковых частиц – протонов. Масса протона еще тоже очень мала, хотя она почти в две тысячи раз больше массы электрона. Это устанавливает любопытную асимметрию между положительным и отрицательным электричеством. Напротив, заряд протона по абсолютной величине равен заряду электрона, но, разумеется, противоположен ему по знаку. До самого последнего времени протон рассматривался как частица, представляющая собой элементарную единицу положительного электричества. Однако открытие положительного электрона несколько усложнило вопрос. Действительно, существует частица положительного электричества, имеющая массу, равную массе электрона, и заряд, равный по величине и противоположный по знаку заряду электрона, – положительный электрон, или позитрон. Какая же из этих двух частиц является на самом деле элементарной частицей положительного электричества – протон или позитрон? Или имеются две существенно различные элементарные частицы положительного электричества? Открытие нейтрона, предшествовавшее открытию положительного электрона, позволяло думать, что протоны – сложные образования, состоящие из нейтрона и положительного электрона. В настоящее время полагают, что протоны и нейтроны скорее два различных состояния одной и той же частицы. Но до самого последнего времени физики считали протон единицей положительного электричества. Этой точки зрения мы пока здесь и будем придерживаться.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.