Революция в физике - [16]

Шрифт
Интервал

Этот отвлеченный характер электромагнитной теории становится особенно заметным в той форме, которую придал ей несколько позже Герц. И тем не менее многие из физиков того времени все еще испытывали потребность ввести некоторую среду – носитель электромагнитного поля – и рассматривать поле как некоторое состояние возбуждения этой среды. Многие, и в особенности лорд Кельвин, потратили много усилий, пытаясь получить механическое объяснение электромагнитных явлений, сводя их к натяжению или упругим деформациям эфира. Однако эти попытки никогда не приводили к удовлетворительным результатам, и со временем подобные теории эфира себя полностью дискредитировали. Эфир стал рассматриваться теперь как некоторая гипотетическая среда, позволяющая определять лишь системы координат, в которых справедлива обычная форма уравнений Максвелла. Но даже после того, как за эфиром была оставлена столь скромная роль, это понятие все еще приводило к ряду трудностей. В частности, электродинамика движущихся сред, базирующаяся на предположении, что эфир может служить для определения движения по отношению к абсолютному пространству, оказывалась весьма сложной и привела в конце концов к противоречию с экспериментом. И только теория относительности внесла полную ясность в этот вопрос, совершенно устранив из физических теорий понятие эфира.

Одним из наиболее блестящих подтверждений теории Максвелла было открытие Герцем электромагнитных волн, названных в его честь волнами Герца. Электромагнитная теория предсказывала, что при достаточно быстром изменении электрического тока в цепи возможно излучение в окружающее пространство электромагнитной волны, которая, согласно идеям Максвелла, должна иметь структуру, совершенно аналогичную структуре световой волны. Но волны, которые можно было бы получать с помощью соответствующего электрического контура, обладали всегда частотой, гораздо меньшей, и соответственно длиной волны, гораздо большей, чем частота и длина световых волн. Отсюда, естественно, вытекало и различие между свойствами этих волн: волны Герца не воздействуют на наши органы чувств и, что связано с большой длины волны, легко огибают непрозрачные препятствия, встречающиеся на их пути. Однако, несмотря на эти различия, имелась и большая общность между световыми волнами и волнами Герца. В частности, с последними можно было повторить ставшие классическими эксперименты по отражению, преломлению, интерференции или дифракции волн. Необходимые для этого экспериментальные установки должны в основном быть такими же, хотя, разумеется, и гораздо больших масштабов в соответствии с изменившейся длиной волны.

Это памятное открытие волн Герца и их свойств не оставило больше никаких сомнений в правильности основных идей Максвелла, касающихся электромагнитной природы света. И нет, пожалуй, нужды напоминать, что именно открытие волн Герца позволило осуществить беспроволочный телеграф, а позднее способствовало развитию других средств связи на расстоянии.

Электромагнитная теория позволяет также рассматривать распространение света в материальных средах. Она привела к знаменитому соотношению, связывающему диэлектрическую постоянную однородной среды с ее показателем преломления, и позволила изучить поглощение света в проводящих средах. Но только после того, как она была дополнена гипотезой о дискретной электрической структуре материи (гипотеза электронов), электромагнитная теория дала возможность по настоящему глубоко исследовать характер распространения света в материальных средах.

4. Термодинамика

Нельзя закончить этот краткий очерк истории развития классической физики, не сказав несколько слов о науке, которая целиком была создана учеными XIX в., о термодинамике.

В XVIII в. теплота представлялась в виде некоторой жидкости, общее количество которой остается в течение различных физических процессов неизменным. Для объяснения целого ряда явлений, и в особенности явления распространения тепла в материальных телах, эта гипотеза оказывалась вполне удовлетворительной. Изящная и классическая теория распространения тепла в пространстве, созданная Фурье, исходит из соотношения, которое выражает «закон сохранения теплоты». Но многочисленные явления, в которых теплота возникает в результате трения, с большим трудом объяснялись в рамках этой гипотезы, и мало-помалу физики от нее отказались и стали рассматривать теплоту не как некую вечную субстанцию, а просто как одну из форм энергии. Действительно, во всех происходящих вокруг нас чисто механических явлениях энергия сохраняется всегда, за исключением тех случаев, когда в результате трения происходит выделение тепла. Если рассматривать теплоту как одну из форм энергии, то можно выдвинуть некий общий принцип сохранения энергии. Мы не будем рассказывать здесь о том, как развивался этот принцип и как он был подтвержден измерениями механического эквивалента теплоты. Но, как известно, одного принципа сохранения энергии еще недостаточно для построения термодинамики. К нему необходимо добавить еще принцип Карно, или принцип возрастания энтропии. Впервые этот принцип был выдвинут в 1824 г. Сади Карно в заметках о тепловых машинах, где он указал на невозможность полного превращения тепла в работу. Эти соображения Карно легли в основу высказанного несколькими годами позже принципа, который остается справедливым и по настоящий день. Чтобы придать ему математическую форму, Клаузиус ввел понятие энтропии и показал, что энтропия изолированной системы может только возрастать.


Рекомендуем почитать
Ядерная зима. Что будет, когда нас не будет?

6 и 9 августа 1945 года японские города Хиросима и Нагасаки озарились светом тысячи солнц. Две ядерные бомбы, сброшенные на эти города, буквально стерли все живое на сотни километров вокруг этих городов. Именно тогда люди впервые задумались о том, что будет, если кто-то бросит бомбу в ответ. Что случится в результате глобального ядерного конфликта? Что произойдет с людьми, с планетой, останется ли жизнь на земле? А если останется, то что это будет за жизнь? Об истории создания ядерной бомбы, механизме действия ядерного оружия и ядерной зиме рассказывают лучшие физики мира.


О движении

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Золотое правило

В небольшой по объему книге «Золотое правило» М. Ивановский в занимательней форме сообщает читателю интересные сведения из истории, а также из жизни великого ученого древности — Архимеда.Наряду с историческими сведениями автор, воспользовавшись удачным литературным приемом, знакомит школьников с устройством и действием целого ряда простых механизмов — ворота, лебедки, полиспаста, дифференциального ворота и др. И хотя некоторые из этих механизмов не изучаются в школьном курсе физики, они в описании автора становятся вполне понятными для учащихся VI–VII классов.М.



Неизвестный алмаз. «Артефакты» технологии

В книге описываются результаты экспериментов по изучению оригинального квантово-волнового метода механического воздействия на кристаллы алмаза. Проведенные эксперименты открывают новые свойства и особенности этих кристаллов, находящихся в сильнонеравновесных условиях обработки. Показана принципиальная возможность возникновения необратимых сильнонеравновесных явлений в кристаллах алмаза при формировании в их объеме волновых потоков с винтовым возмущением волнового фронта. Взаимодействие этих волновых потоков в объеме алмаза приводит как к изменению дефектно-примесной структуры алмаза, снятию внутренних напряжений, так и к формированию морфологического рельефа поверхности кристалла без непосредственного касания всей его поверхности инструментом.


Вторжение в физику 20-го века

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.