Революция в физике - [10]
Выше мы рассмотрели случай движения одной материальной точки в заданном силовом поле. При обобщении теории Якоби на случай системы взаимодействующих друг с другом материальных точек возникает одна особенность, о которой мы еще будет говорить, когда перейдем к волновой механике систем. Если система состоит из N материальных точек, то необходимо ввести в рассмотрение некоторое абстрактное пространство 3N координат N частиц, образующих систему, так называемое конфигурационное пространство. Действительно, если написать уравнение Якоби для системы, исходя из гамильтонова выражения для ее энергии, то мы получим дифференциальное уравнение в частных производных первого порядка и второй степени. Это уравнение, содержит 3N независимых переменных, являющихся координатами N материальных точек системы, и определяет некоторые семейства поверхностей в конфигурационном пространстве (а не в обычном трехмерном пространстве). Очевидно, что каждая конфигурация определяется заданием 3N координат точек, входящих в систему, и может быть геометрически представлена в виде точки в конфигурационном пространстве – с этим и связано такое название пространства. Последовательности же различных состояний системы изображается кривой в конфигурационном пространстве – траекторией, изображающей точки системы. Эти условные траектории системы зависят от 6N параметров – 6 начальных условий для каждой из N точек. Теория Якоби так же, как и в случае одной материальной точки, позволяет разделить это 6N-мерное множество траекторий на ряд семейств. Каждое из этих семейств определяется 3N-параметрами и образует семейство кривых, ортогональных семейству поверхностей, которые в свою очередь являются интегральными поверхностями уравнения Якоби. Именно этот случай 3N-мерного конфигурационного пространства находит аналогию в распространении волн. Можно предвидеть, что при трактовке вопросов динамики систем волновая механика, согласно теории Якоби, должна следовать этому пути и рассматривать распространение волн в конфигурационном пространстве. Это приводит к тому, что волны в волновой механике не только имеют вероятностный и статистический смысл, но и носят также отвлеченный и символический характер, сильно отличаясь от тех волн, с которыми имела дело классическая физика.
5. Принцип наименьшего действия
Уравнения динамики материальной точки в поле сил, обладающих потенциалом, можно получить, исходя из принципа, который в общем виде носит название принципа Гамильтона, или принципа стационарного действия. Согласно этому принципу, из всех движений материальной точки, которые она может совершить между теми же начальной и конечной точками за тот же самый промежуток времени t>2…t>1 в действительности осуществляется то движение, для которого интеграл по времени от t>1 до t>2 от разности кинетической и потенциальной энергий этой материальной точки принимает экстремальное, т.е. минимальное или максимальное значение. Пользуясь известными методами вариационного исчисления, легко показать, что из этого принципа вытекают классические уравнения движения.
Особенно простую форму принимает принцип стационарного действия в частном, но важном случае статических силовых полей. В этом случае он совпадает с принципом наименьшего действия Мопертюи, согласно которому для действительного пути материальной точки в консервативном (т.е. не зависящем явно от времени) силовом поле интеграл от импульса частицы, взятый по отрезку траектории между какими-либо двумя ее точками A и B, минимален по сравнению с такими же интегралами, взятыми по отрезкам других кривых, проведенных через точки A и B. Принцип Мопертюи может быть выведен из принципа Гамильтона. Его можно связать также с теорией Якоби.
Мы видели, что в случае статических полей траектории в этой теории можно рассматривать как кривые, ортогональные некоторому семейству поверхностей. Простые рассуждения показывают, что эти траектории могут быть получены из условия минимальности интеграла, совпадающего с действием по Мопертюи, т.е. криволинейного интеграла от количества движения вдоль траектории. Вывод этот весьма интересен, так как он указывает на связь, существующую между принципом наименьшего действия и принципом минимального времени Ферма.
Действительно, мы уже говорили о том, что траектории в теории Якоби можно рассматривать как аналог световых лучей в геометрической оптике. Анализ же доводов, приводимых в доказательство принципа наименьшего действия, показывает, что они полностью идентичны тем, которые в геометрической оптике приводятся для обоснования принципа минимального времени, или принципа Ферма. Вот его формулировка: в преломляющей среде, свойства которой не зависят от времени, световой луч, проходящий через точки A и B, выбирает себе такой путь, чтобы время, необходимое ему для прохождения от точки A до точки B, было минимальным, т.е. следует по кривой, которая обращает в минимум криволинейный интеграл от величины обратной фазовой скорости распространения света. Теперь сходство между принципом Мопертюи и принципом Ферма очевидно.
6 и 9 августа 1945 года японские города Хиросима и Нагасаки озарились светом тысячи солнц. Две ядерные бомбы, сброшенные на эти города, буквально стерли все живое на сотни километров вокруг этих городов. Именно тогда люди впервые задумались о том, что будет, если кто-то бросит бомбу в ответ. Что случится в результате глобального ядерного конфликта? Что произойдет с людьми, с планетой, останется ли жизнь на земле? А если останется, то что это будет за жизнь? Об истории создания ядерной бомбы, механизме действия ядерного оружия и ядерной зиме рассказывают лучшие физики мира.
В небольшой по объему книге «Золотое правило» М. Ивановский в занимательней форме сообщает читателю интересные сведения из истории, а также из жизни великого ученого древности — Архимеда.Наряду с историческими сведениями автор, воспользовавшись удачным литературным приемом, знакомит школьников с устройством и действием целого ряда простых механизмов — ворота, лебедки, полиспаста, дифференциального ворота и др. И хотя некоторые из этих механизмов не изучаются в школьном курсе физики, они в описании автора становятся вполне понятными для учащихся VI–VII классов.М.
В книге описываются результаты экспериментов по изучению оригинального квантово-волнового метода механического воздействия на кристаллы алмаза. Проведенные эксперименты открывают новые свойства и особенности этих кристаллов, находящихся в сильнонеравновесных условиях обработки. Показана принципиальная возможность возникновения необратимых сильнонеравновесных явлений в кристаллах алмаза при формировании в их объеме волновых потоков с винтовым возмущением волнового фронта. Взаимодействие этих волновых потоков в объеме алмаза приводит как к изменению дефектно-примесной структуры алмаза, снятию внутренних напряжений, так и к формированию морфологического рельефа поверхности кристалла без непосредственного касания всей его поверхности инструментом.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В очередном выпуске серии «Научно-популярная библиотека» рассказывается о том, как возникают молния и гром, какой вред может причинить молния и как защититься от её разрушительного воздействия. В начале книги даются основные сведения об электричестве.