Рефлексы головного мозга - [119]
Другой и самый главный залог непогрешимости математического мышления (при этом прошу читателя держать пока в голове числа и арифметические действия над ними)[48] заключается в идеальной однородности, простоте и неизменяемости по природе того материала, из которого выстроены математические величины. Благодаря таким свойствам материала все действия над ним (по смыслу те же самые, что приписаны выше химику) – анализ, синтез и сравнение – достигают идеальной простоты и дают абсолютно верные результаты. Так, достоверность вывода «дважды два – четыре» более достоверности наступления завтрашнего дня после сегодняшнего, – первая абсолютна, а за достоверность второго вывода говорит лишь опыт людей за многие тысячи лет против одного гадательного завтра. По тем же причинам степени сходств и разниц в математике от тождества к противоположности вполне определенны. Более крайней и простой противоположности, чем «положительное» и «отрицательное» математики, нет ничего на свете.
Все только что перечисленные свойства математических величин, выражающиеся словами: однородность, неизменяемость по природе под влиянием действий, определенность действий и результатов, определенность сходств и разниц, очевидно, заимствованы от фактов действительности, с тем лишь различием от последних, что в математических величинах все эти свойства сведены, так сказать, до идеала, а в реальных вещах они представляют лишь приближения к идеалу. Кроме того, вся характеристика количества взята мной от чисел и арифметических действий над ними; а арифметика усваивается в очень ранней юности, т. е. почвой, воспитавшейся исключительно на реальностях.
Однако мысль математики не останавливается на этой первоначальной ступени развития, и от конечного она переходит к бесконечному, от неизменного к изменяющемуся.
Если на бумаге провести черту карандашом или пером в каком-либо направлении, то под микроскопом, при достаточно сильном увеличении, контуры черты никогда не окажутся ровными, а всегда мелко зазубренными. Причина понятна. Первое прикосновение пера или карандаша к бумаге дает точку некоторых размеров; следовательно, передвижению их должен соответствовать непрерывный ряд точек, тем более зернистый, чем точка крупнее и передвижение ее медленнее. Еще большая неправильность черты получилась бы в случае, если бы поступательное движение точки было связано с вращениями пишущего снаряда около оси и размеры точки не во всех направлениях были одинаковы. Дело другого рода, если вообразить себе точку, не имеющую размеров, – тогда она могла бы двигаться с какой угодно медленностью и с какими угодно вращениями, – путь ее во всяком случае будет линией, однородной по длине, без размеров в толщину. Такая точка будет математической точкой, а путь ее передвижения – математической линией. То и другое более чем внечувственно – то, что называется фикцией, реальной невозможностью; но зато отношение между точкой и линией стало строго определенным со стороны пространственной. Пример этот показывает, какими простыми рассуждениями и опытами можно дойти до фикций, когда дело идет о крайне простых отношениях. С другой стороны, легко показать, что обе фикции приложимы к реальностям, что опять говорит в пользу происхождения их из реальностей. Так, центр тяжести тела есть понятие, стоящее уже на границе реальности, а между тем таким центром может быть только математическая точка. Другой пример. Столяр, измеряя размеры какой-либо поделки ниткой, очень ясно понимает, что тут дело не в толщине нитки, а только в ее длине. Представление о контуре предмета тоже эквивалентно математической линии: глаз видит контур как границу между фигурой тела и окружающим ровным фоном; но куда отнести эту границу как линию: к веществу тела или к окружающему фону? Одна математическая линия, без размера в толщину, выводит ум из затруднения.
Для перехода количества в область бесконечного возьмем такой простой пример.
Из 1 можно сделать 2 прибавлением к 1 несметного числа несметно малых дробей.
Как ни проста эта мысль, но за нею скрывается уже очень многое:
1) беспредельная с виду дробность величин, не доходящая, однако, до нуля;
2) нуль как предел дробимости – фикция, эквивалентная по смыслу математической точке, – эта в приложении к протяженностям, та – к количествам;
3) беспредельное нарастание величин в сторону фиктивного предела «бесконечность», с ее знаком ∞.
Понятия эти составляют исходные пункты высшего математического анализа; и как они ни отвлеченны, в них все еще слышится отзвук действительности. Так, мировое пространство представляется уму беспредельным; абсолютный 0° температуры есть возможная реальность; нуль давления в барометрической пустоте есть реальность действительная.
Вот, далее, пример математической зависимости, вполне эквивалентный тому, что зовется в обыденной жизни причинной зависимостью.
Если х обозначает какую-либо неизвестную величину и она связана каким-либо образом с другой известной я, то обе вместе представляют новую неизвестную у; например, а + х = у. Если при этом ставить на место х какие-либо известные величины в одеянии букв или чисел, или, как говорится, считать ж величиной переменной, то каждой определенной перемене х будет соответствовать определенная перемена всей суммы, т. е. у: поэтому и говорят, что в данном уравнении х представляет независимую переменную, а у – зависимую. Первая, очевидно, играет роль причины, а у – роль эффекта; тем более что и здесь связь между величинами ху, как между причиной и эффектом, роковая. Таков исходный пункт учения о функциях; корни его, очевидно, лежат в арифметике; а дальнейшее развитие сводится в сущности на изучение отношений между зависимыми и независимыми переменными, когда последние изменяются непрерывно с различной быстротой. При этом, по самому смыслу факта непрерывного изменения, изучению должны подлежать мгновенные формы изменений – величины, приближающиеся к нулю. Последняя мысль лежит опять в основе высшего анализа и представляет самоочевидную истину; корни же ее лежат, очевидно, в таких чувственных наблюдениях, как течение воды или всякое вообще видимое движение, и в простых опытах вроде следующего. Ряд близких несоприкасающихся точек кажется с известного расстояния сплошной линией; следовательно, перемещение пера, произведшего эту линию, состояло из ряда отдельных коротких фаз, а результат получился такой, словно передвижение было непрерывно. Значит, разница между математической и чувственной непрерывностью следующая: та, по ограниченности наших чувств, может быть лишь кажущейся, а та абсолютна.
Иван Михайлович Сеченов, смог превратить физиологию в точную науку, благодаря его исследованиям искусство диагностики болезней шагнуло далеко вперед. Однако путь успеху знаменитого врача был очень непрост. Его мать, крепостная крестьянка мечтала, что сын когда-нибудь станет профессором. Ивану пришлось самому пробиваться в жизни…
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В чём причина психоза? Что же такое на самом деле «психическая болезнь»? Можно ли исправить состояние человека, который «сошёл с ума»? Почему дети перестают развиваться, становятся аутистами или умственно отсталыми? И главное, можно ли это исправить? Как можно защитить свой разум и свою психику от безумия, невроза и психоза? Может ли психиатрия эффективно излечивать психические расстройства? Ответы на все эти вопросы есть в этой книге. Вы можете защитить свой разум – настоящие причины психозов открыты и известны.
Ее называют «Тони Роббинс для женщин». Откровенная, яркая, чертовски умная и немного сумасшедшая, Рейчел Холлис рассказывает миллионам читателей то, что другая не решиться поведать даже самой близкой подруге. Она озвучивает 20 мифов, которые отравляют жизнь большинству женщин. А потом развенчивает каждый из них, снабжая свои размышления трагичными, смешными, нелепыми и просто трогательными историями из собственной жизни. Эта книга – доза высокооктанового топлива. Она заставляет очнуться и по-новому взглянуть на свое настоящее и будущее.
Книга, рассказывающая о «раке XXI века». Как возникает депрессия, по каким законам она развивается, как проявляется и каким образом сказывается на физическом самочувствии человека? А также – какие существуют способы лечения депрессивных расстройств? Ответы на эти вопросы в пособии для врачей общей практики.
Первое российское издание бестселлера психиатра и теолога, директора Кельнской психиатрической больницы, популярного немецкого писателя Манфреда Лютца. Книга посвящена психике человека и болезненным отклонениям, относительности понятий «нормального» и «ненормального», затрагивает философские проблемы бытия, касается вопросов этики. Книга написана с редким для такой тематики чувством юмора и будет интересна самому широкому кругу читателей.
Человеческая душа - это непознанная вселенная, в которой борятся два вечных начала - добро и зло. Можно ли противостоять стрессам и депрессии, победить зависть и злорадство, интриги и клевету, преодолеть страх и комплексы неполноценности, сковывающие душу и тело, не прибегая при этом к помощи знахарей и экстрасенсов? Можно - отвечает В.А.Сухарев. Обратите взгляд внутрь себя, научитесь в себе искать причины собственных страданий и болей, поверьте в силу мысли, воли - и вы станете властелином своей судьбы. В книге читатели найдут ответы на множество вопросов: почему женщины стареют раньше мужчин, а живут дольше, как избрать спутника жизни, достичь гармонии в сексуальных отношениях.
Начало и окончание всего процесса заключается в руководстве. Руководство - наиважнейшая составляющая любой организации. Все мы понимаем важность хорошего руководства и узнаем, когда видим его. Но описание руководства или обучение ему - цель труднодостижимая. Добро пожаловать в книгу "Кораблестроитель". Эта увлекательная аллегория управления бизнесом, выстроенная из образов Древней Греции, учит пяти принципам руководства, таким же эффективным сегодня, какими они были 2500 лет назад. Вы узнаете как: - делать больше с меньшим количеством людей; - меньше надзирать; - строить работу в команде; - уменьшать текучесть кадров; - улучшать моральный дух каждого, включая вас самих.