Рассказы о биоэнергетике - [15]

Шрифт
Интервал

Таким образом, реакция нейтрализации кислоты и щелочи, образованных дыханием, станет движущей силой процесса синтеза АТФ.

Чтобы завершить строительство «интеллектуального собора», - остается лишь догадаться, как именно дыхание образует кислоту и щелочь.

Известно, что окисление субстратов дыхания кислородом катализируется дыхательными ферментами. Они бывают двух типов, Одни присоединяют атомы водорода, другие присоединяют электроны. Если окислить донор водорода (AH2) ферментом — акцептором электронов (С), то одним из продуктов реакции окажутся ионы Н+:

AH2 + 2C → A + 2Ce- + 2H+

Если теперь восстановить кислород посредством Се-, то произойдет потребление ионов Н+:

2Ce- + O + 2H+ → 2C + Н2O.

Вот мы и свели концы с концами!

Такова хемиосмотическая гипотеза Митчела. Oна схематично изображена на рисунке.

Oкисление субстрата АН2 (реакция 1) ферментом — акцептором электронов, который не указан, чтобы не усложнять схему, происходит на левой поверхности мембраны. В результате электроны присоединяются к ферменту, а протоны уходят в воду.

Затем электроны переносятся ферментом на правую сторону мембраны и там восстанавливают молекулярный кислород или какой-нибудь другой акцептор водорода (в общей форме обозначен буквой В). Вещество В, присоединив электроны, связывает ионы Н+ справа от мембраны, превращаясь в ВН2.

Синтез АТФ (реакция 2) происходит таким образом, что два иона Н+ отщепляются от АДФ и фосфата справа от мембраны, компенсируя потерю двух Н+ при восстановлении вещества В. Один из кислородных атомов фосфата переносится на другую сторону мембраны и, присоединив два иона Н+ из левого отсека, образует ШО. Остаток фосфорила присоединяется к АДФ, давая АТФ.

По схеме Митчела, показанной на рисунке, роль дыхания в синтезе АТФ ограничивается созданием избытка Н+ на одной стороне мембраны по сравнению с другой ее стороной. Дыхание как бы сгущает, концентрирует ионы Н+ в одном из двух отсеков системы, разделенных мембраной. Это означает, что оно совершает осмотическую работу. Затем осмотическая энергия, накопленная в виде разности концентраций ионов Н+ между левым и правым отсеками, расходуется на химическую работу, то есть на синтез АТФ.

Вот почему Митчел назвал свою схему «хемиосмотической гипотезой». Она выгодно отличается от старой, «химической» схемы, приведенной на странице 36, по крайней мере в одном своем аспекте. Митчел обошелся без неуловимых промежуточных продуктов вроде АН2 • фермент, А • фермент и А • фосфат. Ему вообще не нужны были какие-либо специальные продукты, общие для реакций дыхания и фосфорилирования. По Митчелу, связующим звеном двух процессов служат водородные ионы.

Итак, хемиосмотическая гипотеза освободилась от одного из недостатков старых схем. В то же время она объяснила два ранее непонятных момента: необходимость мембран и механизм действия веществ-разобщителей.

Совершенно очевидно, что устройство, придуманное Митчелом, нуждается в двух пространствах, разделенных мембраной, непроницаемой для ионов Н+ и ОН-. Любое нарушение изолирующих свойств мембраны, например повышение ее проницаемости для Н+, то есть протонной проводимости, должно подавлять процесс синтеза АТФ. Что касается дыхания, то при повышении проводимости оно ускорится, так как перенос водорода и электронов, уже не приводящий к накоплению энергии, «покатится под гору», превращая всю энергию дыхания в тепло.

Так ведь это же и есть разобщение дыхания и фосфорилирования: тот самый феномен, над объяснением которого бились авторы «химических» гипотез, заставляя динитрофенол уподобиться фосфату в реакции с ферментом!

Митчел обратил внимание на то, что все разобщители — растворимые в жирах слабые кислоты, имеющие в своем составе обратимо связывающийся протон. Так возникло предположение, что разобщители служат переносчиками протонов через мембрану. Они связывают Н+ на той ее стороне, где дыхание создает избыток ионов водорода, затем диффундируют, неся лишний протон, через мембрану, и освобождают Н+ в противоположном отсеке, где водородные ионы в дефицит

Корни гипотезы

Пожалуй, только два факта (оба негативного свойства!) были положены Митчелом в основу его гипотезы в далеком уже 1961 году. Это невозможность найти химические продукты, которые были бы общими для дыхания и фосфорилирования, и необъяснимость роли мембран и действия разобщителей в рамках традиционных представлений, почерпнутых из аналогии с брожением.

Однако было бы ошибочным полагать, что хемиосмотическая гипотеза возникла совсем уж на пустом месте. Еще в 1945 году швед Г. Лундегард писал о возможности образования кислоты и щелочи мембранными окислительными ферментами. Лундегард был первым, кто «уложил» дыхательный фермент поперек мембраны, увидев в этом механизм концентрирования ионов. В 40-е годы эту гипотетическую концепцию подхватили И. Конвей и Т. Брейди, стремившиеся таким способом объяснить механизм образования кислоты в желудке. В начале 50-х годов ту же мысль обсуждали в Англии Р. Деви, А. Огстон и Г. Кребс (тот самый Кребс, имя которого увековечено на карте обмена веществ в связи с циклом карбоновых кислот). В 1960 году известный биохимик Р. Робертсон, избранный впоследствии президентом Академии наук Австралии, писал о разделении зарядов как о первичной стадии получения энергии, необходимой для синтеза АТФ.


Еще от автора Владимир Петрович Скулачёв
Жизнь без старости

Академик РАН Владимир Скулачев и ведущие российские биохимики, проведя многолетние эксперименты, сделали выдающееся научное открытие: старение — это программа, закодированная в генах. Ее можно расшифровать и отменить, ведь недаром обнаружен зверек, который никогда не стареет. На основе сенсационного исследования авторами книги было создано лекарство, которое лечит одну из старческих болезней, ранее считавшуюся неизлечимой. Не исключено, что это только начало пути, и уже в ближайшие годы будет создан препарат, предохраняющий от старости.


Рекомендуем почитать
Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.