Ракеты и полеты в космос - [127]
При дозвуковой скорости воздух на пути самолета не сжимается им, подобно газу в замкнутом цилиндре, сжимаемому поршнем. Когда же скорость самолета становится сверхзвуковой, воздух не может уйти с его пути и действительно сжимается даже в открытом пространстве. Физики объясняют это тем, что при сверхзвуковой скорости полета область, находящаяся впереди снаряда или самолета, является «областью отсутствия звукового сигнала».
Рис. 80. Образование «конуса Маха».
Эта «область отсутствия сигнала» лежит вне «конуса Маха» (рис. 80). За счет сжатия воздуха здесь, если можно так выразиться, создается источник колебаний, или «импульсная точка». До тех пор пока эта «импульсная точка» неподвижна, возбуждаемые ею ударные волны распространяются концентрически, постепенно затухая. По мере удаления этих концентрических волн от «импульсной точки» их поверхность увеличивается и они слабеют. Когда источник колебаний начинает двигаться, сферы звуковых (несущих «сигнал») и ударных волн теряют концентрическую форму; «сигнал» замедляется. А когда скорость «импульсной точки» превысит скорость звука, «сигнал», то есть звуковая волна, отстанет от нее. Рис. 81 показывает графически, как это явление выглядит на фотоснимках артиллерийских снарядов, сделанных по методу «шлиренкинематографии»[57].
Рис. 81. Схема распространения ударных волн, образуемых 156-мм американским снарядом «Лонг Том» на разных скоростях полета.
Но не только это отличает дозвуковые скорости полета от сверхзвуковых. Предположим, что воздух с дозвуковой скоростью проходит через трубу. Пока труба остается прямой, скорость потока не меняется. Но если сделать трубу постепенно уменьшающегося диаметра, то поток воздуха будет набирать скорость.Скорость потока может достигнуть М= 1, если наше сопло будет достаточно длинным. Сверхзвуковой поток в таком сопле, наоборот, замедляется. В расширяющемся (расходящемся) сопле дозвуковой поток замедляется, а сверхзвуковой - увеличивает скорость (рис. 82). Вот почему сопло ракетного двигателя сначала сходится, чтобы разогнать дозвуковой поток до скорости звука, а затем расширяется, чтобы максимально увеличить эффективную скорость истечения.
Рис. 82. Зависимость скорости истекающих газов от конфигурации сопла.
Хотя все эти явления были более или менее известны как теоретические положения, инженеры-проектировщики самолетов нуждались в конкретных цифровых данных. Для этого необходимо было создать экспериментальный самолет. Работа над ним началась в декабре 1944 года. Самолет получил обозначение XS-1, которое позднее было сокращено до Х-1. Он должен был подниматься на высоту 10700 м и развивать здесь скорость не менее 1280 км/час (М = 1,21) на протяжении 2—5 минут.
По внешнему виду самолет Х-1 напоминал ракету «Фау-2», положенную горизонтально, с крыльями, хвостовым оперением, трехколесным шасси и с пилотом в приборном отсеке.
Согласно первоначальному замыслу самолет Х-1 не должен был быть ракетным. Конструкторы могли свободно выбирать любую двигательную установку при условии, что летные характеристики будут отвечать заданным. Однако, не желая перегружать конструкцию различными нововведениями, они решили сделать самолет как можно более похожим на обычный винтовой. Поэтому сначала в проекте фигурировал турбореактивный самолет. Но турбореактивные двигатели того времени не обеспечивали необходимой скорости. Они могли давать скорость, приблизительно соответствующую М = 1, но только на небольшой высоте.
Затем была рассмотрена комбинация турбореактивного и ракетного двигателей. Первый предназначался в основном для взлета, набора высоты и возвращения на базу, а второй—для разгона самолета и поддержания требуемой скорости на рабочей высоте. Вскоре выяснилось, что эта комбинация чрезмерно увеличивает габариты самолета. Характеристики турбореактивного двигателя с высотой ухудшались, что снижало скорость набора высоты и, следовательно, увеличивало расход топлива. Скорость, которую самолет развивал на рабочей высоте, оказывалась также довольно небольшой при значительном расходе топлива. Кроме того, применение двух столь сильно отличающихся друг от друга двигательных установок усложняло эксплуатацию самолета.
По сравнению с такой комбинированной системой, самолет, снабженный только ракетным двигателем, имел определенно лучшие характеристики. Несмотря на большой расход топлива, самолет развивал при наборе высоты (до 11 000 м) большую скорость подъема (около 6000 м/мин) при общей скорости полета порядка 800 км/час. На больших высотах теоретическая скорость набора высоты и скорость полета были еще выше, составляя максимально на высоте 36 000 м 36 000 м/мин и 2250 км/час. После сравнительного анализа проектов с различными двигательными установками было решено остановиться на ракетном двигателе.
Было рассмотрено много типов топлива, прежде чем выбор пал на жидкий кислород и этиловый спирт. Перекись водорода была отвергнута, потому что двигатели на этом топливе в то время давали очень низкие удельные импульсы. Азотная кислота и анилин считались не подходящими для пилотируемого самолета; эти топлива являются самовоспламеняющимися, и хранить их нужно раздельно, так как при одновременной их утечке может возникнуть сильный пожар. Значительно упростить топливную систему мог бы нитрометан, представляющий собой однокомпонентное топливо (монотопливо), но он опасен тем, что в определенных условиях, которые в то время еще не были хорошо изучены, сильно детонирует. Изучались также бензин и жидкий кислород. Но для бензинового ракетного двигателя с регенеративным охлаждением необходимо было устанавливать третий бак—с водой, так как бензин не мог быть использован в качестве охлаждающей жидкости. Выбранные компоненты топлива жидкий кислород и спирт—давали хороший удельный импульс, являлись относительно безопасными и удобными в обращении. Двигатель имел регенеративное охлаждение, обеспечиваемое циркуляцией топлива в рубашке охлаждения перед подачей в камеру сгорания. Для улучшения охлаждения одна часть воды смешивалась с тремя частями этилового спирта. Оказалось, что добавка такого количества воды очень мало влияет на импульс тяги, но заметно способствует улучшению охлаждения.
Грацианский Николай Павлович. О разделах земель у бургундов и у вестготов // Средние века. Выпуск 1. М.; Л., 1942. стр. 7—19.
Монография составлена на основании диссертации на соискание ученой степени кандидата исторических наук, защищенной на историческом факультете Санкт-Петербургского Университета в 1997 г.
В монографии освещаются ключевые моменты социально-политического развития Пскова XI–XIV вв. в контексте его взаимоотношений с Новгородской республикой. В первой части исследования автор рассматривает историю псковского летописания и реконструирует начальный псковский свод 50-х годов XIV в., в во второй и третьей частях на основании изученной источниковой базы анализирует социально-политические процессы в средневековом Пскове. По многим спорным и малоизученным вопросам Северо-Западной Руси предложена оригинальная трактовка фактов и событий.
Книга для чтения стройно, в меру детально, увлекательно освещает историю возникновения, развития, расцвета и падения Ромейского царства — Византийской империи, историю византийской Церкви, культуры и искусства, экономику, повседневную жизнь и менталитет византийцев. Разделы первых двух частей книги сопровождаются заданиями для самостоятельной работы, самообучения и подборкой письменных источников, позволяющих читателям изучать факты и развивать навыки самостоятельного критического осмысления прочитанного.
"Предлагаемый вниманию читателей очерк имеет целью представить в связной форме свод важнейших данных по истории Крыма в последовательности событий от того далекого начала, с какого идут исторические свидетельства о жизни этой части нашего великого отечества. Свет истории озарил этот край на целое тысячелетие раньше, чем забрезжили его первые лучи для древнейших центров нашей государственности. Связь Крыма с античным миром и великой эллинской культурой составляет особенную прелесть истории этой земли и своим последствием имеет нахождение в его почве неисчерпаемых археологических богатств, разработка которых является важной задачей русской науки.
Автор монографии — член-корреспондент АН СССР, заслуженный деятель науки РСФСР. В книге рассказывается о главных событиях и фактах японской истории второй половины XVI века, имевших значение переломных для этой страны. Автор прослеживает основные этапы жизни и деятельности правителя и выдающегося полководца средневековой Японии Тоётоми Хидэёси, анализирует сложный и противоречивый характер этой незаурядной личности, его взаимоотношения с окружающими, причины его побед и поражений. Книга повествует о феодальных войнах и народных движениях, рисует политические портреты крупнейших исторических личностей той эпохи, описывает нравы и обычаи японцев того времени.