Ракетные двигатели - [7]

Шрифт
Интервал

Из всех внешних условий (скорость полета, состояние атмосферы и др.) только атмосферное давление оказывает некоторое, да и то небольшое, влияние на рабочий процесс ракетного двигателя. Эта независимость рабочего процесса от внешних условий является важным свойством ракетного двигателя. Благодаря этому свойству скорость истечения и секундный расход газов, а следовательно, и тяга ракетного двигателя, также остаются постоянными при изменении внешних условий.

Только при изменении атмосферного давления, например с изменением высоты полета, тяга несколько изменяется — с увеличением высоты тяга растет.

Особенно важным является то, что тяга остается постоянной при изменении скорости полета.

Мощность ракетного двигателя

Мощность, развиваемая двигателем, т. е. механическая работа, совершаемая им в единицу времени (секунду), является важнейшей характеристикой любого двигателя. Это и естественно, если иметь в виду, что именно совершение этой механической работы за счет израсходования определенного количества энергии другого вида — тепловой, электрической или еще какой-либо — и является назначением всякого двигателя. В соответствии с этим двигатели подразделяются на электрические, тепловые и т. д.

Обычно мощность, развиваемая каким-либо двигателем, может быть использована самыми разнообразными способами. Для этого вал двигателя связывают с тем или иным потребителем механической работы. Так, например, поршневой двигатель внутреннего сгорания может быть установлен на электростанции и вращать ротор динамомашины, тогда мощность двигателя будет преобразовываться в электрическую энергию; он может вращать трансмиссию в цехе и приводить таким образом в движение станки; может быть установлен на автомобиле для привода его ведущих колес; наконец, может вращать пропеллер самолета и т. д. Во всех этих случаях мощность двигателя будет неизменной, она будет только по-разному расходоваться. В частности, для нас очень важно, что мощность такого двигателя, установленного, допустим, на самолете, будет также одинаковой, вне зависимости от того, неподвижен ли самолет, стоящий на аэродроме, или летит со скоростью в сотни километров в час.

Именно этим свойством обычного поршневого авиационного двигателя объясняется то, что он перестал удовлетворять требованию непрерывного роста скорости полета, характерному для современной авиации.

Действительно, мощность, потребная для полета данного самолета, очень быстро растет при увеличении скорости полета, пропорционально кубу этой скорости. Значит, при увеличении скорости полета в два раза потребная мощность вырастет соответственно в восемь раз. Еще значительнее становится рост потребной мощности при приближении скорости полета к скорости звука, т. е. скорости, с которой звук распространяется в воздухе (немногим более 1200 км/час вблизи земли), что объясняется дополнительным сопротивлением, связанным с явлением сжимаемости воздуха при этих скоростях.

Установка на самолетах все более мощных двигателей приводит лишь к незначительному увеличению скорости полета. Более мощные двигатели оказываются и более тяжелыми (вес двигателя увеличивается почти пропорционально его мощности), а также большими по размерам, вследствие чего для их установки требуются и большие по размерам самолеты. Но это в свою очередь увеличивает мощность, потребную для полета с данной скоростью.

Выход из этого заколдованного круга был найден применением двигателей принципиально иного типа — двигателей прямой реакции в частности, ракетных. Поэтому не без основания говорят что применение реактивных двигателей в авиации представляет собой настоящую техническую революцию.

Ракетный двигатель в смысле развиваемой им мощности ведет себя совсем иначе, чем, например, поршневые двигатели внутреннего сгорания.

B этом легко убедиться.

Как известно, мощность — это работа, произведенная за секунду, работа же есть действие силы на некотором пути. Поэтому величина работы определяется произведением силы на пройденный в направлении ее действия путь, а мощность соответственно равна произведению силы на скорость. Если мощность измерять в лошадиных силах, то, как известно, величину секундной работы в килограммометрах нужно еще разделить на 75, так как 1 л. с. = 75 кгм/сек; таким образом:

Чему же равна мощность ракетного двигателя? Так как реактивная сила, т. е. тяга, развиваемая двигателем, от скорости передвижения не зависит, то мощность ракетного двигателя оказывается прямо пропорциональной скорости полета.

Когда двигатель неподвижен — например, испытывается на станке, — его мощность равна нулю, несмотря на то, что тяга, развиваемая двигателем, может быть при этом очень велика. Мощность становится значительной лишь при больших скоростях передвижения.

Это свойство ракетного двигателя характеризует его как двигатель специфически транспортный; мало того, как двигатель для аппаратов, передвигающихся с очень большими скоростями, возможными лишь в воздухе и вне пределов атмосферы, т. е. двигатель для самолетов, снарядов, ракет.

На малых скоростях ракетный двигатель развивает весьма незначительную мощность, но зато при увеличении скорости мощность возрастает и может достигать значений, недосягаемых для других тепловых двигателей. Это обстоятельство позволяет получить с помощью ракетного двигателя скорость полета значительно большую, чем с помощью обычных (поршневых) авиационных двигателей.


Еще от автора Карл Александрович Гильзин
Путешествие к далеким мирам

В книге рассказывается о том, как создавалась астронавтика — наука о межпланетных сообщениях, об основах этой науки, ее удивительном настоящем и увлкательном будущем. В ней говорится о многочисленных невиданных трудностях, стоящих на пути человека в Космос, и о том, как наука и техника преодолевают эти трудности, как готовится полет человека в космическое пространство.


В небе завтрашнего дня

Эта книга представляет собой живой, увлекательный рассказ об авиации, ракетной технике и космонавтике, их настоящем и будущем. Она вводит юного читателя в мир необычных летательных аппаратов атмосферной и заатмосферной авиации. Сегодня эти аппараты еще только рождаются в замыслах ученых и конструкторов, на чертежных досках и экспериментальных аэродромах, но именно им принадлежит будущее. В 1959 году книга «В небе завтрашнего дня» удостоена второй премии на конкурсе Министерства просвещения РСФСР на лучшую книгу о науке и технике для детей.


Воздушно-реактивные двигатели

Из введения: ...В книге будет рассказано также о том, какие интересные и сложные физические процессы происходят при работе воздушно-реактивных двигателей и как ученые и инженеры овладевают и управляют этими процессами, вписывая блестящие страницы в историю борьбы за овладение силами природы и покорение их человеком; о том, как устроены различные воздушно-реактивные двигатели, каковы их характеристики и их место в авиации настоящего и будущего; о тех замечательных перспективах, которые открываются перед реактивной авиацией будущего, и о том, как ученые и конструкторы борются сегодня за то, чтобы возможное стало действительным...


Эта удивительная подушка

В книге рассказывается о самых различных применениях воздушной подушки в настоящее время и в будущем: о летающих автомобилях, судах и поездах, о воздушных домах, о городах под куполом и многом другом.


Рекомендуем почитать
Юный техник, 2015 № 04

Популярный детский и юношеский журнал.


Юный техник, 2015 № 03

Популярный детский и юношеский журнал.


Юный техник, 2014 № 02

Популярный детский и юношеский журнал.



Столярные и плотничные работы

Умение работать с благородным материалом – деревом – всегда высоко ценилось в России. Но приобретение умений и навыков мастера плотничных и столярных работ невозможно без правильного подхода к выбору материалов, инструментов, организации рабочего места, изучения технологических тонкостей, составляющих процесс обработки древесины. Эта книга покажет возможности использования этих навыков как в процессе строительства деревянного дома, так и при изготовлении мебели своими руками, поможет достичь определенных высот в этом увлекательном и полезном процессе.


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.