Радиоисследования планет с космических аппаратов - [8]
Отметим также, что при углах падения Θ ≈ 0° удельная эффективная площадь рассеяния определяется коэффициентом отражения, вычисленном для случая облучения поверхности по нормали к ней. Таким образом, по интенсивности сигнала, поступающего на вход приемника, и по характеру ее изменения (в ходе эксперимента) можно найти коэффициент отражения радиосигнала поверхностью, а также и степень ее шероховатости. Наконец, используя подобный метод измерения, легко определяются эффективная диэлектрическая проницаемость и плотность грунта.
Бистатическая радиолокация. При бистатической радиолокации приемник может принимать не только прямой сигнал передатчика, но и сигнал, отраженный поверхностью планеты. Исходной информацией для анализа характеристик отражения поверхности являются спектр отраженного сигнала и отношение интенсивностей прямого и отраженного сигналов.
Для бистатических радиолокационных экспериментов главным образом используют искусственные спутники Луны и планет, так как в этом случае могут быть проведены многократные измерения.
Бистатическая радиолокация обычно выполняется но следующей схеме. На борту искусственного спутника располагается передатчик, который генерирует модулированные либо монохроматические сигналы.
Чаще всего этот передатчик является элементом системы передачи телеметрической, телевизионной и другой информации с КА на наземный пункт приема. Прием прямого сигнала и сигнала, отраженного поверхностью планеты, производится на наземном пункте, где устанавливается аппаратура для анализа спектра отраженного сигнала.
Бистатическая радиолокация также может проводиться и с использованием радиоаппаратуры двух космических аппаратов. В экспериментах по бистатической радиолокации часто используются антенны с широкой и круговой диаграммами направленности (рис. 5).
Рис. 5. Схема бистатической радиолокации Венеры: 1 — передающая антенна искусственного спутника Венеры; 2 — приемная антенна Центра дальней космической связи; 3 — приемная антенна радиолинии «космический аэростат — искусственный спутник Венеры»; 4 — прямой сигнал; 5 — передающая антенна аэростата; 6 — отраженный сигнал; 7 — поверхность Венеры
Как показали расчеты и экспериментальные измерения в метровом и дециметровом диапазонах, область на поверхности, участвующая в формировании отраженного сигнала, находится вблизи точки зеркального отражения. Эта точка на поверхности определяется из известного условия геометрической оптики — равенства угла отражения углу падения. Причем это условие выполняется не только для гладкой отражающей поверхности, но и для шероховатой, на которой характерные размеры неровностей существенно превышают (больше чем на порядок) используемую длину волны.
Мощность отраженных от поверхности планеты сигналов в основном определяется суммой однократных отражений от отдельных участков поверхности. Однако некоторую роль играют и многократные отражения, особенно в районах со сложным рельефом. При однократном отражении вклад одинаковых по размеру участков поверхности, но находящихся на разном удалении от расчетной точки зеркального отражения, различен. Больший вклад создают участки, расположенные ближе к точке зеркального отражения.
Если поверхность в районе расчетной точки зеркального отражения гладкая, то размеры области, создающей отраженный сигнал, будут определяться интерференцией (наложением) падающей на поверхность и отраженной от нее волн. Применительно к размерам Луны и для высот полета Н ≈ 100 км и углов падения Θ ≈ 60° линейный размер такой области составит величину около 1 км.
В случае неровной поверхности размер области, участвующей в формировании отраженного сигнала, существенно возрастает. Проведенные расчеты и выполненные эксперименты по бистатической радиолокации Луны показали, что размеры зоны формирования отраженного сигнала в метровом диапазоне возрастают в 10 и более раз по сравнению с размерами зоны, рассчитанной для гладкой модели поверхности. Для неровной поверхности размер зоны отражения определяется двумя величинами: расстоянием от КА до расчетной точки зеркального отражения и среднеквадратичным углом наклона поверхности, о котором мы уже рассказывали выше.
В результате обработки бистатических радиолокационных экспериментов могут быть получены два параметра: среднеквадратичные углы наклона поверхности и эффективная диэлектрическая проницаемость вещества поверхностного слоя. Первый параметр непосредственно определяется либо из частотного спектра отраженного сигнала при непрерывном излучении, либо из формы отраженного импульса при импульсной модуляции бортового передатчика. Для определения второго параметра обычно требуется измерение энергетического соотношения между прямым и отраженным сигналами. Значение же величины эффективной диэлектрической проницаемости может быть получено только путем сопоставления результатов эксперимента с модельными расчетами, в которые входят определенные значения σα и вариации значений ε для данного пространственного расположения передатчика, планеты и приемника.
В этой книге спрятано 99 секретов астрономии. Откройте ее и узнайте о том, как устроена Вселенная, из чего состоит космическая пыль и откуда берутся черные дыры. Забавные и простые тексты расскажут о самых интересных астрономических явлениях и законах. Да здравствует наука БЕЗ занудства и непонятных терминов!
Освоение космоса давно шагнуло за рамки воображения:– каждый год космонавты отправляются за пределы Земли;– люди запускают спутники, часть которых уже сейчас преодолела Солнечную систему;– огромные телескопы наблюдают за звездами с орбиты нашей планеты.Кто был первым первопроходцем в небе? Какие невероятные теории стоят за нашими космическими достижениями? Что нас ждет в будущем? Эта книга кратко и понятно расскажет о самых важных открытиях в области астрономии, о людях, которые их сделали.Будьте в курсе научных открытий – всего за час!
Воспоминания американского астронавта Майкла Маллейна посвящены одной из наиболее ярких и драматичных страниц покорения космоса – программе многоразовых полетов Space Shuttle. Опередившая время и не использованная даже на четверть своих возможностей система оказалась и самым опасным среди всех пилотируемых средств в истории космонавтики. За 30 лет было совершено 135 полетов. Два корабля из пяти построенных погибли, унеся 14 жизней. Как такое могло случиться? Почему великие научно-технические достижения несли не только победы, но и поражения? Маллейн подробно описывает период подготовки и первое десятилетие эксплуатации шаттлов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Прошедший год принёс новые достижения в освоении космоса. Советские автоматические станции провели широкий комплекс исследований Марса и Венеры. «Луна 20» доставила на Землю грунт из материкового района Луны. Вокруг Земли несут круглосуточную вахту спутника «Прогноз». Достигнут ряд важных соглашений между СССР и США в области исследования космоса. Сборник, составленный по материалам, опубликованным в центральной печати, рассказывает об этих достижениях. Комментарии известных советских ученых знакомят читателя с широким кругом проблем.
Создание спускаемых аппаратов ознаменовало собой новый этап в развитии космонавтики, связанный с началом пилотируемых полетов в космос и существенным прогрессом в космических исследованиях далеких тел Солнечной системы. Об этих аппаратах, их конструкции, системах и назначении и рассказывается в брошюре.Брошюра рассчитана на широкий круг читателей, интересующихся современными проблемами космической техники.
Брошюра посвящена созданию и использованию космических твердотопливных двигателей. Рассматриваются некоторые типы таких двигателей, а также возможные перспективы их использования в космонавтике.Брошюра рассчитана на всех тех, кто интересуется современными проблемами космической техники.
В брошюре популярно излагаются физические основы космической технологии и рассматриваются перспективные направления космического производства — космическая металлургия, получение полупроводниковых материалов, стекла, биологически активных препаратов и т. д., — имеющие большое народнохозяйственное значение. Рассказывается о результатах экспериментов по космическому производству во время полетов советских космических кораблей «Союз» и орбитальных научных станций «Салют», а также на американских космических аппаратах.Брошюра рассчитана на широкий круг читателей.