Радиоисследования планет с космических аппаратов - [3]
Прежде чем перейти к понятию «радиояркостной температуры», отметим, что «яркость» радиоизлучения есть (как и в оптическом диапазоне) энергия излучения, проходящая через единичную площадку за единицу времени при изменении энергии в единичной полосе частот. Таким образом, для «яркости» радиоизлучения абсолютно черного тела справедлив закон Релея—Джинса, связывающего интенсивность излучения I с температурой источника T: I = kT/λ>2, где k = 1,38 · 10>–23 Дж/К — постоянная Больцмана, λ — длина волны, на которой производится измерение.
Рис 2. Схема радиоизмерений с борта искусственного спутника Земли: 1 — орбита; 2 — трасса наблюдений; 3 — трасса подспутниковой точки; 4 — экватор
С помощью радиотелескопа измеряется «яркость» радиоизлучающего тела, которое, вообще говоря, не является абсолютно черным, т. е. оно не только поглощает падающую на него энергию, но и частично отражает ее. Однако при формальном использовании в этом случае закона Релея—Джинса можно также получить величину «температуры», которую и называют «радиояркостной температурой». Эта величина зависит от действительной температуры исследуемого источника радиоизлучения, если, конечно, оно является тепловым. На практике часто используется отношение радиояркостной температуры к реальной температуре — так называемый коэффициент излучения данного тела.
При изучении радиоизлучения планет, как уже отмечалось, исследуется степень поляризации, частотный спектр радиоизлучения, а также зависимость интенсивности от времени суток и сезона. Все эти данные позволяют получить важную информацию о физических параметрах атмосферы и поверхностного слоя изучаемой планеты. В частности, определяются такие характеристики, как диэлектрическая проницаемость и электропроводность вещества верхнего покрова планеты, температура грунта и соответствующие распределения этих параметров с глубиной (при измерениях на различных радиочастотах) и с высотой (при определенном выборе используемой радиочастоты), когда исследуется температурный режим атмосферы планеты.
Степень поляризации радиоизлучения, в свою очередь, зависит от рельефа и температуры грунта, а также от диэлектрической проницаемости и электропроводности. Если исследуемый грунт имеет лишь незначительную электропроводность, то, при одновременном исследовании радиоизлучения в двух различных плоскостях вектора поляризации (но на одной и той же радиочастоте), удается определить сразу и диэлектрическую проницаемость и температуру грунта. При использовании более сложной методологии измеряется и электропроводность грунта.
Метод приема радиоизлучения одновременно на нескольких частотах очень продуктивен при изучении атмосфер планет. В этом случае радиочастоты выбираются таким образом, чтобы они (по крайней мере некоторые из них) находились вблизи так называемых резонансных частот собственных колебаний молекулярных газов. Такие резонансные частоты характерны для радиоизлучения молекул водяного пара, кислорода, формальдегида и т. д. Дело в том, что вблизи резонансных частот общее радиоизлучение планеты ослабляется, и по степени этого ослабления можно определить содержание данного газа в атмосфере планеты. Кроме того, спектр радиоизлучения в «нерезонансной» области радиочастот дает сведения о температуре атмосферы (для различных высот), а также о наличии влаги в облачном покрове. Например, исследуя радиоизлучение Венеры в области длин волн около 1,35 см, ученые смогут определить содержание водяного пара в атмосфере этой планеты, а делая измерения одновременно на трех-пяти радиочастотах (длинах волн) в миллиметровом и сантиметровом диапазонах, получат распределение температуры подоблачной атмосферы с высотой.
При проведении подобных измерений используются широкодиапазонные приемники радиоизлучения, в которых с помощью системы частотных фильтров весь исследуемый диапазон разбивается на ряд участков — каналов. В этих частотных каналах затем проводится усиление принимаемого излучения и определяется его интенсивность. Такие приемники называют спектральными радиометрами.
Качество измерений с помощью радиометров, установленных на борту космических аппаратов, в сильной степени зависит от соответствующих характеристик используемой антенны. Для получения высокого разрешения исследуемого участка на поверхности планеты (т. е. размера участка, усредненные характеристики которого еще возможно определить при использовании данного радиотелескопа) необходимо применять антенны с узкой диаграммой направленности.
Диаграмма направленности представляет собой характерную зависимость коэффициента усиления от различных направлений наблюдения объекта. Часто этот коэффициент измеряют в относительных единицах (по отношению к максимальному значению коэффициента усиления).
Для дальнейшего изложения нам понадобятся следующие характеристики диаграммы направленности:
1. Ширина диаграммы направленности. Она определяется разностью углов наблюдения, при которых коэффициент усиления становится в два раза меньше своего максимального значения.
2. Уровень боковых лепестков
В этой книге речь идет об удивительных небесных телах – экзопланетах. Эти планеты вращаются не вокруг нашего Солнца, а вокруг других звезд. Разнообразие видов экзопланет поражает воображение: горячие газовые гиганты и холодные мини-копии Нептуна, миры-океаны и суперземли, обращающиеся вокруг своих звезд или свободно плывущие в космическом пространстве. Что собой представляют эти миры? Как ученым удалось их обнаружить? И, конечно, есть ли там жизнь? Добро пожаловать в захватывающее путешествие! Для широкого круга читателей.
В книге всемирно известного астрофизика, члена Королевского астрономического общества сэра Мартина Риса описываются фундаментальные силы, управляющие нашей Вселенной. Автор утверждает, что расширяющаяся Вселенная может быть определена всего шестью числами: N, e, Ω, l, Q, D, каждое из которых играет особую и решающую роль в ее эволюции, а вместе они определяют ее развитие и потенциал возможностей. Два из них связаны с основными силами; другие два определяют размер и общую структуру Вселенной и показывают, будет ли она существовать вечно; еще два говорят о свойствах самой Вселенной.
В ваших руках, уважаемый читатель, — вторая часть книги «100 рассказов о стыковке и о других приключениях в космосе и на Земле». Первая часть этой книги, охватившая период от зарождения отечественной космонавтики до 1974 года, увидела свет в 2003 году. Автор выполнил свое обещание и довел повествование почти до наших дней, осветив во второй части, которую ему не удалось увидеть изданной, два крупных периода в развитии нашей космонавтики: с 1975 по 1992 год и с 1992 года до начала XXI века. Как непосредственный участник всех наиболее важных событий в области космонавтики, он делится своими впечатлениями и размышлениями о развитии науки и техники в нашей стране, освоении космоса, о людях, делавших историю, о непростых жизненных перипетиях, выпавших на долю автора и его коллег.
В книге рассказывается о том, как создавалась астронавтика — наука о межпланетных сообщениях, об основах этой науки, ее удивительном настоящем и увлкательном будущем. В ней говорится о многочисленных невиданных трудностях, стоящих на пути человека в Космос, и о том, как наука и техника преодолевают эти трудности, как готовится полет человека в космическое пространство.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Брошюра посвящена 20-летию выдающегося события в истории человечества — запуску в январе 1959 г. в СССР автоматической станции «Луна-1», которая впервые в мире достигла окрестностей другого небесного тела. Приводится описание первых «разведчиков космоса» — советских автоматических станций «Луна», показано, какую эволюцию претерпела сейчас советская «лунная» космическая техника, даны краткие научные итоги космических исследований Луны.Брошюра рассчитана на инженеров, преподавателей и студентов вузов, учащихся старших классов, а также на более широкий круг читателей, интересующихся вопросами космонавтики.
12 января 1977 г. исполняется 70 лет со дня рождения выдающегося ученого нашей страны, основоположника практической космонавтики, академика Сергея Павловича Королева. В статьях, помещенных в этом сборнике, рассказывается о жизни и деятельности прославленного конструктора, об истории создания первых искусственных спутников Земли и космических кораблей.Брошюра рассчитана на широкий круг читателей.
Брошюра посвящена созданию и использованию космических твердотопливных двигателей. Рассматриваются некоторые типы таких двигателей, а также возможные перспективы их использования в космонавтике.Брошюра рассчитана на всех тех, кто интересуется современными проблемами космической техники.
В брошюре популярно излагаются физические основы космической технологии и рассматриваются перспективные направления космического производства — космическая металлургия, получение полупроводниковых материалов, стекла, биологически активных препаратов и т. д., — имеющие большое народнохозяйственное значение. Рассказывается о результатах экспериментов по космическому производству во время полетов советских космических кораблей «Союз» и орбитальных научных станций «Салют», а также на американских космических аппаратах.Брошюра рассчитана на широкий круг читателей.