Радиоэлектроника в нашей жизни - [17]
Несколько лет ведутся работы и по созданию так называемых «атомных часов». В этих часах используется явление, открытое радиоспектроскопией: при прохождении электромагнитных волн через газ поглощение радиоволн происходит на строго определенной частоте. Ни изменение температуры, ни другие воздействия не могут «сбить» эти часы. За 300 лет такие часы могут уйти вперед или отстать не более чем на одну секунду!
Радиоэлектронные приборы позволили физикам измерять ничтожные изменения линейных размеров тел. Для этой цели были созданы радиомикрометры. Одна из основных деталей радиомикрометра — конденсатор колебательного контура. Его емкость, как емкость любого конденсатора, зависит от расстояния между пластинами. А от емкости, как мы уже говорили, в свою очередь, зависит частота колебательного контура. Если одну из пластин соединить с предметом, длина которого изменяется, а другую закрепить неподвижно, то по отклонению частоты контура можно судить об изменении длины.
С помощью радиомикрометра, способного реагировать на ничтожно малые изменения размеров тел, изучают явления нагревания, намагничения и другие процессы. Современные электронные микрометры могут обнаруживать смещения в одну миллиардную долю миллиметра!
Для целого ряда физических исследований очень важно производить регулирование температуры с большой точностью. А для этого нужны точные измерители температуры. Электронные схемы измерения и регулирования температуры позволяют поддерживать ее постоянство с точностью свыше одной тысячной доли градуса.
Огромную помощь оказывают электронные приборы ученым, изучающим условия работы различных машин и механизмов. Здесь важно знать, какие механические усилия испытывают те или иные детали или узлы. Чтобы измерять усилия, к деталям и узлам пристраивают чувствительные устройства — «датчики», которые под действием механических усилий вырабатывают электрические сигналы. Чем большее усилие испытывает датчик, тем большей силы импульсы вырабатывает он. Импульсы от датчиков усиливаются ламповыми усилителями и подаются на стрелочные приборы.
Развитие радиоэлектронной техники явилось базой для создания приборов, использующих не радиоволны, а неслышимые звуки — ультразвуки[9]. В этих приборах радиоэлектронные схемы применяются для создания ультразвуковых волн.
В настоящее время с помощью ультразвуков определяют глубины морей, очищают и полируют поверхности металлических изделий, ускоряют химические реакции, затачивают резцы из сверхтвердых сплавов, режут листы металла и стекла и даже стирают белье. Большое значение имеют ультразвуковые дефектоскопы, впервые разработанные советским ученым С. Я. Соколовым. С помощью этих приборов можно в массивных металлических изделиях обнаружить мельчайшие дефекты: трещины, раковины, посторонние тела[10].
Наиболее ценен вклад радиоэлектроники в ядерную физику — науку, изучающую строение атомного ядра. Для исследований в этой области были созданы мощные физические установки — ускорители элементарных частиц (электронов, протонов и др.). При помощи ускорителей ученые осуществляют «стрельбу» по ядрам атомов различных веществ. Это позволяет расщеплять атомы, выделять огромную энергию, получать новые вещества.
Современный ускоритель — сложнейшее радиоэлектронное устройство[11]. Это — огромное сооружение, весящее десятки тысяч тонн. Ускорение элементарных частиц осуществляется в большой вакуумной камере, расположенной между полюсами гигантского электромагнита. На специальные электроды от генератора подается ускоряющее переменное напряжение. Оно, как и магнитное поле электромагнита, воздействует на частицу — «подталкивает» ее, увеличивает ее скорость. Благодаря этому двойному воздействию элементарная частица начинает двигаться по спирали и, разгоняясь, постепенно удаляется от центра вращения. Наступает момент, когда электромагнит уже не в состоянии удерживать частицу, и она устремляется наружу и поражает «цель».
Сейчас в различных странах используется несколько типов ускорителей элементарных частиц. Самыми мощными из них являются синхрофазотроны. В них изменяется не только частота переменного напряжения, подаваемого на электроды, но и величина магнитного поля. Это позволяет получить частицы с энергией в миллиарды электронвольт[12].
Крупнейшие установки для ускорения частиц высоких энергий открывают необозримые горизонты для развития ядерной физики. Самая мощная ускорительная установка — синхрофазотрон — построена в Советском Союзе. В этой установке за 3,3 секунды частицы делают внутри камеры четыре с половиной миллиона оборотов и проходят при этом путь в миллион километров, двигаясь почти со скоростью света. На синхрофазотроне удалось придать частицам энергию в 10 миллиардов электронвольт!
Управление работой всех составных частей современных ускорителей осуществляется автоматически при помощи сложных электронных приборов.
Без применения новейших достижений радиоэлектроники трудно себе представить возможность получения атомной энергии и использования ее для нужд человечества.
Электроника в биологии и в медицине
Электрической энергией можно воздействовать на живую ткань, замедлять или ускорять интенсивность тех или иных процессов, происходящих в организме.
Человечеству в ХХ веке пришлось пережить многие войны, национальные конфликты и революции, сопровождавшиеся кровавыми расправами одних сторон над другими. Характер и масштаб их был разный, но в основе своей они нередко несли расовые противоречия.С тех пор научное сообщество в своем большинстве наложило гласные и негласные запреты не только на явно расистские учения, как, например, евгенику, но и на вполне научные области знания — среди них генетические, биологические, антропологические направления, связанные с развитием и особенностями человеческих рас.
Знать правду весьма полезно, особенно о своей жизни и своем здоровье. Это экономит силы, время и деньги, которых можно лишиться, гоняясь за химерами. Мифы о здоровье окружают нас везде, и их своевременное развенчание — залог полноценной жизни! В этой книге Андрей Сазонов собрал тридцать распространенных медицинских мифов, ложных утверждений, о который все не только слышали, но и успешно претворяли в жизнь. Какие продукты сжигают жиры, и есть ли смысл в перекусах? Вода обычная и минеральная — нужно ли нам выпивать 8 стаканов ежедневно? Седина от стресса и аллергия от тополиного пуха — где правда? Каждый развенчанный миф — шаг к осознанию того, как действительно нужно следить за своим здоровьем. Давайте жить качественно! Лечится тем, что помогает, покупать то, что нужно, делать то, что идет нам на пользу. Ударим по мифам научным подходом!
В русской истории 14 лет, прошедших с 1598 по 1612 год, называют «разрухою» или «Смутным временем». «Смятения» Русской земли, или «Московская трагедия», как писали о ней иностранцы, началась с прекращением династии Рюриковичей, т. е. после кончины Царя Фёдора Ивановича, и кончилась, когда земские чины, собравшиеся в Москве в начале 1613 г., избрали на престол в Цари Михаила Фёдоровича, родоначальника новой династии Дома Романовых.
Под именем лорда Кельвина вошел в историю британский ученый XIX века Уильям Томсон, один из создателей экспериментальной физики. Больше всего он запомнился своими работами по классической термодинамике, особенно касающимися введения в науку абсолютной температурной шкалы. Лорд Кельвин сделал вклад в развитие таких областей, как астрофизика, механика жидкостей и инженерное дело, он участвовал в прокладывании первого подводного телеграфного кабеля, связавшего Европу и Америку, а также в научных и философских дебатах об определении возраста Земли.
…Люди научились точно учитывать время, когда развилась астрономия — наука о небесных светилах. Только благодаря астрономии мы умеем точно ответить на вопросы: «который час?», «какое сегодня число?», так как эта наука дала правила выверки часов и правила счета дней и годов, то есть то, что называется календарем. Объяснению этих правил и посвящена предлагаемая брошюра.
Каким образом научились записывать звук, какие для этого пришлось придумать машины, как совершенствовались эти машины со временем, какую роль играет искусство записи и повторения звука в современной жизни — обо всем этом и рассказывается в нашей книге.
В брошюре Г. И. Покровского «Наука и техника в современных войнах» говорится о большой роли современной науки и техники в военном деле. Автор рассматривает важнейшие проблемы естественных и технических наук, связанные с военным делом. Брошюра не претендует на полноту освещения затронутых в ней вопросов, на всестороннее их рассмотрение. Автор стремился дать материал для суждений на эту тему, помочь военнослужащим в развитии творческой мысли и в самостоятельной работе по обобщению опыта учебы, воспитания и боевой подготовки, в выработке смелого, верного научного предвидения, чтобы никакие неожиданности не могли застать их врасплох.Брошюра рассчитана на офицеров Советской Армии, Авиации и Флота.