Радиоактивные изотопы и их применение - [7]

Шрифт
Интервал

Изотопы были обнаружены и среди нерадиоактивных элементов. Удалось доказать, например, что газ неон представляет собою смесь атомов неона с различной массой.

Впоследствии были обнаружены или получены искусственным путем изотопы всех элементов.

С помощью химических символов можно легко обозначать изотопы различных элементов. Например, изотопы натрия с массовыми числами 22, 23 и 24 записываются следующим образом:

Na>22, Na>23, Na>24

Ниже приводится таблица природных изотопов некоторых элементов. Как видно из таблицы, алюминий, фосфор и марганец имеют только по одному природному изотопу.

Природные изотопы некоторых элементов
Название элементаСимволМассы изотопов
ВодородH1, 2
УглеродC12, 13
КислородO16, 17, 18
АлюминийAl27
ФосфорP31
СераS32, 33, 34, 36
ХлорCl35, 37
КалийK39, 40, 41
МарганецMn55
ЖелезоFe54, 56, 57, 58
МедьCu63, 65
ПлатинаPt190, 192, 194, 195, 196,198
СвинецPb204, 206, 207, 208, 210.211, 212, 214
УранU234, 235, 238



Ⅱ. РАДИОАКТИВНЫЕ ИЗОТОПЫ

1. Радиоактивное излучение

Мы уже говорили о том, что радий испускает альфа-, бета- и гамма-лучи. Излучение, подобное радию, дают уран, торий, полоний и многие другие радиоактивные элементы. Однако распад других радиоактивных веществ не обязательно сопровождается всеми тремя видами излучений. Что же представляют собой альфа-, бета- и гамма-лучи?

В результате исследований действия электромагнитного поля на радиоактивное излучение ученые нашли, что альфа-лучи — это поток положительно заряженных частиц — ядер атомов гелия. Альфа-частицы вылетают из ядра атома с огромной скоростью — например из ядра атома радия со скоростью, примерно равной 17 000 километров в секунду. Они способны проникать через слой воздуха в несколько сантиметров толщиной. Проходя через воздух, они его ионизируют и делают проводником электричества.

Бета-лучи — это поток электронов, некоторые из которых вылетают из ядра атома со скоростью, достигающей величины, близкой к скорости света (300 000 километров в секунду в пустоте). Они проникают через вещества значительно лучше, чем альфа-лучи. Если альфа-лучи задерживаются пластинкой алюминия толщиной, равной 0,05 миллиметра, то бета-лучи способны пройти через слой алюминия толщиною до нескольких миллиметров. Так же, как и альфа-лучи, электроны делают воздух проводником электричества, только в меньшей степени.

Гамма-лучи имеют ту же природу, что и обычный видимый нами свет, но в отличие от него гамма-лучи, ослабляясь, проходят через непрозрачные тела, например через бумагу, дерево; они способны проникнуть даже через слои металлов толщиной в несколько сантиметров. Излучение природных радиоактивных элементов исчерпывается тремя перечисленными видами.

2. Радиоактивный распад

Теперь рассмотрим, что происходит с радиоактивными атомами при альфа-, бета- и гамма-излучении. Ученые нашли, что при радиоактивном излучении изменяются ядра атомов и происходит превращение атомов одного элемента в атомы другого элемента. Явление это получило название радиоактивного распада.

Каждый радиоактивный атом рано или поздно превращается в другой атом. Но не все атомы одного и того же радиоактивного изотопа существуют одинаковое время; одни атомы распадаются быстро, а другие могут оставаться неизменными очень долго.

Каким же законам подчиняется радиоактивный распад?

Оказывается, число распадающихся за малый промежуток времени[4] атомов прямо пропорционально наличному числу радиоактивных атомов. Это значит, что у того или другого радиоактивного изотопа за такой малый промежуток времени распадается всегда одна и та же часть, одна и та же доля атомов, строго определенная для каждого элемента.

Этот закон ученые установили опытным путем, наблюдая за изменением интенсивности излучения радиоактивных изотопов со временем.

Доля атомов, претерпевающих превращение за выбранную единицу времени, называется постоянной распада.

Если, например, мы имеем 8 000 000 радиоактивных атомов и постоянная распада равна 0,01, то это значит, что в каждую секунду распадается одна сотая часть наличных атомов: за первую секунду — 80 000 атомов, за вторую — сотая часть оставшихся 7 920 000, то есть 79 200 атомов, и т. д.

Скорость радиоактивного распада обычно характеризуют периодом полураспада. Период полураспада — это промежуток времени, в течение которого наличное количество радиоактивных атомов уменьшается вдвое. Например, период полураспада радия D равен 22 годам. Это значит, что из 6 400 000 атомов через 22 года останется 3 200 000 атомов, еще через 22 года — 1 600 000 атомов, затем — 800 000 атомов и т. д.

В этих примерах даны довольно большие числа. Это совершенно необходимо, так как для малых количеств атомов закон не будет соблюдаться: из двух атомов радия D за 22 года может не распасться ни один, а могут распасться и оба.

Изучение превращения элементов при радиоактивном распаде дало возможность ученым установить правило перемещения элемента в периодической системе при этом процессе. Оно было названо «правилом сдвига». Когда радиоактивный атом излучает альфа-частицу, заряд его ядра уменьшается на 2 единицы, так как заряд самой альфа-частицы равен 2. При этом получается новый элемент, который должен занять в периодической системе место через одну клетку влево. Например, когда радий, занимающий 88-ю клетку периодической системы, излучает альфа-частицу, то он превращается в радиоактивный газообразный элемент эманацию радия, который находится в клетке под номером 86.


Рекомендуем почитать
Знание-сила, 2003 № 10 (916)

Ежемесячный научно-популярный и научно-художественный журнал.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Термоядерное оружие

Книга рассчитана на широкий круг читателей, интересующихся термоядерными процессами, термоядерным оружием, принципами его устройства и действия. В книге воины Советской Армии и Военно- Морского Флота познакомятся с наиболее мощным современным видом ядерного оружия — термоядерным оружием, а также с защитой от его поражающего действия. При ознакомлении с книгами серии следует учитывать, что международная система единиц СИ была принята только в 1960 году, а в СССР введена 1 января 1963 года, «в качестве предпочтительной»; теория «ядерной зимы» зародилась в 1983–1985 гг.


Физические основы получения атомной энергии

В настоящей книжке изложены основные вопросы ядерной физики, знание которых необходимо для понимания особенностей ядерной энергии и тех физических принципов, которые используются или предполагаются использоваться в ближайшем будущем для ее производства. Книжка рассчитана на широкий круг военных читателей со средним образованием, стремящихся познакомиться с новой областью науки, имеющей большое практическое значение.


Дмитрий Иванович Менделеев

В книге видного советского философа и историка науки Б. Г. Кузнецова рассказывается о жизни и деятельности великого русского ученого Дмитрия Ивановича Менделеева. Автор показывает сложный образ революционера в науке, величайшего химика, выдающегося технолога, патриота своей страны. Популярно излагается суть открытий и достижений ученого, их значение для развития современной науки, производства и военного дела.


О неслышимых звуках

Открытые в начале XX века ультразвуки нашли широкое применение в самых разнообразных областях науки и техники. Они помогают обнаруживать подводные лодки и различные препятствия на дне морей и рек, используются для промера глубин, для контроля качества металлических конструкций и деталей, для очистки воздуха, в медицине и фармацевтической промышленности и т. д. О том, что такое ультразвуковые волны, о способах их получения, свойствах и применении и рассказывает книга специалиста в области ультразвуков профессора доктора химических наук Бориса Борисовича Кудрявцева «О неслышимых звуках».