Радиоактивные изотопы и их применение - [19]

Шрифт
Интервал

Будущее трансконтинентальных и межпланетных перелетов связано с ядерным горючим. Можно представить себе примерные конструкции двигателей для самолетов и ракет, которые работают, потребляя самое концентрированное топливо — атомное топливо.

Межпланетный корабль должен развить огромную скорость, чтобы вырваться из сферы притяжения Земли. Такую скорость можно получить в ракете, которая использует ядерное горючее. Ракета двигается под действием силы отдачи, такой же силы, которая появляется при выстреле орудия или винтовки. Газы в ракете создаются при горении. Для этого ракета снаряжается порохом или горючей жидкостью и жидким кислородом. Жидкость, сгорая, превращается в газ, который с большой силой вырывается из сопла (дюзов) ракеты и заставляет ее двигаться. Деление урана 235 или плутония может заменить в ракете процесс горения. В этом случае достаточно небольшого количества делящегося материала по сравнению с горючим материалом и жидким кислородом, чтобы ракета приобрела большую скорость. Трудность конструирования такого рода ракеты заключается в том, что камера сгорания и выходные отверстия должны выдерживать очень высокую температуру. Ракета на атомном (ядерном) горючем может работать и иначе, например на принципе испарения жидкости. В качестве такой жидкости может быть взят сильно охлажденный и сжатый большим давлением газ водород, которой при таких условиях представляет собой жидкость. Жидкий водород из специального резервуара под давлением устремляется в ядерный реактор, где он превращается в пар, сильно нагревается и устремляется к выходному отверстию ракеты, двигая ее вперед с огромной скоростью. Ядерный реактор может быть использован и в реактивном двигателе самолета.

Использование атомной энергии может идти и другим путем.

Атомная энергия, высвобождающаяся при радиоактивном распаде в виде излучения, дает возможность широко использовать радиоактивные изотопы в различных областях науки, техники и в военном деле. Этим вопросам и будут посвящены последующие главы книги.




Ⅳ. МЕЧЕНЫЕ АТОМЫ

1. Как можно узнать о присутствии радиоактивных изотопов

При радиоактивном распаде происходит излучение альфа- или бета- (электроны, позитроны) и гамма-лучей. Из опытов Беккереля мы знаем, что эти лучи действуют на фотографическую пластинку так же, как действует на нее свет. Обнаружение радиоактивных излучений с помощью фотопластинок начало развиваться на заре исследований радиоактивности.

Уже в 1904 году русский врач Лондон применял фотопластинки для регистрации наведенной радиоактивности тела животных, помещенных в сосуды с газом радоном. Эта активность на теле животных получалась за счет осаждения радиоактивных изотопов — продуктов распада радона.

Теперь ученые широко используют фотографический способ для обнаружения радиоактивных изотопов. Этот метод получил название радиографии, а снимок — радиоавтографа. Для получения радиоавтографа предмет, содержащий радиоактивный изотоп, прикладывается в темноте к фотопластинке и выдерживается некоторое время. Далее пластинка проявляется. В местах, на которые действовало радиоактивное излучение, появляется потемнение. С полученного таким образом негатива печатается снимок. На снимке светлые места соответствуют участкам, где скапливается радиоактивный элемент. На рис. 13 показан негатив и позитив коренных зубов собаки, концентрировавших радиоактивный натрий, а на рис. 14 — радиоавтограф минерала, содержащего уран.

>Рис. 13. Радиоавтограф коренных зубов собаки, концентрировавших радиоактивный натрий:
>а — снимок (негатив); б — отпечаток (позитив)

>Рис. 14. Радиоавтограф минерала, содержащего уран. Позитив. Светлые места показывают расположение радиоактивного элемента

Радиоактивное излучение может быть обнаружено еще следующим путем. Представим себе, что в цилиндр с поршнем введен чистый водяной пар. С помощью поршня быстро увеличим объем, занимаемый паром, настолько, чтобы пар переохладился. Если в цилиндре нет заряженных частиц, пар останется паром. Если же в цилиндре есть какие-нибудь заряженные частицы, например ионы, то начнется образование тумана — ионы служат центрами, вокруг которых образуются мельчайшие водяные капельки. Так как альфа- и бета-лучи ионизируют воздух, то на пути каждой альфа-частицы или электрона, попадающего в такой цилиндр, т. е. в пространство с переохлажденным паром, возникнет полоска тумана. Полоски можно наблюдать глазом или сфотографировать и по ним считать отдельные частицы, выбрасываемые из ядер атомов. На этом принципе построен специальный прибор — камера Вильсона.

Радиоактивное излучение ионизирует воздух, делает его проводником электрического тока. Поместим радиоактивное вещество в металлическую камеру, в центре которой укреплен металлический стержень, не соприкасающийся с ее стенками. Такая камера называется ионизационной. Присоединим к камере и стержню электрическую батарею. Благодаря присутствию радиоактивного вещества воздух ионизируется и между стержнем и стенкой цилиндра будет протекать электрический ток. Ток этот тем больше, чем интенсивнее излучение. Силу тока можно измерить электрометром. Электрометр — это прибор, в котором тончайшая металлическая нить, соединенная со стержнем металлической камеры, находится между двумя пластинками противоположного знака. Если нить соединена с землей, то электрический ток течет в землю. Если же нить отъединить от земли, то на стержне и на нити будет накопляться электрический заряд, и нить будет перемещаться к пластинке, заряженной электричеством противоположного знака. Перемещение нити идет тем быстрее, чем больше радиоактивного вещества находится в камере. Движение нити наблюдают в микроскоп. Скорость движения нити является мерой интенсивности излучения. На рис. 15 показана схема ионизационной камеры с электрометром.


Рекомендуем почитать
Знание-сила, 2003 № 10 (916)

Ежемесячный научно-популярный и научно-художественный журнал.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Термоядерное оружие

Книга рассчитана на широкий круг читателей, интересующихся термоядерными процессами, термоядерным оружием, принципами его устройства и действия. В книге воины Советской Армии и Военно- Морского Флота познакомятся с наиболее мощным современным видом ядерного оружия — термоядерным оружием, а также с защитой от его поражающего действия. При ознакомлении с книгами серии следует учитывать, что международная система единиц СИ была принята только в 1960 году, а в СССР введена 1 января 1963 года, «в качестве предпочтительной»; теория «ядерной зимы» зародилась в 1983–1985 гг.


Физические основы получения атомной энергии

В настоящей книжке изложены основные вопросы ядерной физики, знание которых необходимо для понимания особенностей ядерной энергии и тех физических принципов, которые используются или предполагаются использоваться в ближайшем будущем для ее производства. Книжка рассчитана на широкий круг военных читателей со средним образованием, стремящихся познакомиться с новой областью науки, имеющей большое практическое значение.


Дмитрий Иванович Менделеев

В книге видного советского философа и историка науки Б. Г. Кузнецова рассказывается о жизни и деятельности великого русского ученого Дмитрия Ивановича Менделеева. Автор показывает сложный образ революционера в науке, величайшего химика, выдающегося технолога, патриота своей страны. Популярно излагается суть открытий и достижений ученого, их значение для развития современной науки, производства и военного дела.


О неслышимых звуках

Открытые в начале XX века ультразвуки нашли широкое применение в самых разнообразных областях науки и техники. Они помогают обнаруживать подводные лодки и различные препятствия на дне морей и рек, используются для промера глубин, для контроля качества металлических конструкций и деталей, для очистки воздуха, в медицине и фармацевтической промышленности и т. д. О том, что такое ультразвуковые волны, о способах их получения, свойствах и применении и рассказывает книга специалиста в области ультразвуков профессора доктора химических наук Бориса Борисовича Кудрявцева «О неслышимых звуках».