Радиоактивные изотопы и их применение - [12]

Шрифт
Интервал

. Этой энергией должны обладать ядра атомов гелия. Измерения показывают, что энергия каждого ядра гелия равна 13,6 миллионным долям эрга, а обоих ядер приблизительно 27 миллионным долям эрга, то есть равна энергии, вычисленной по уравнению взаимосвязи массы и энергии.

Смысл современного материалистического понимания закона сохранения материи состоит в том, что материя не может бесследно исчезнуть или возникнуть из ничего. Материя вечна. В различного рода процессах она меняет свою форму — из одного вида материи получается другой. Изменение массы материи связано с изменением запаса ее энергии.

Попытки буржуазных ученых использовать взаимосвязь массы и энергии для опровержения основ диалектического материализма — вечности материи — не состоятельны. Они лишь извращают смысл взаимосвязи массы и энергии. Энергия немыслима без материи и материя — без энергии.

Мы видели, что при образовании из ядра атома лития и протона двух ядер атомов гелия выделяется ядерная энергия, равная приблизительно 27 миллионным долям эрга.

Эта кинетическая энергия ядер атомов гелия при их торможении превращается в тепло. Так как 1 грамм лития содержит приблизительно 10>23 атомов лития, то при его превращении в гелий под действием протонов выделяется 27∙10>17 эргов, или 64 миллиарда калорий тепла.

Однако чтобы произошло образование из атома лития и протона двух атомов гелия, необходимо выстрелить в литий 10 миллионами протонов с энергией протона, равной 6 десятимиллионным долям эрга. Только один из 10 миллионов протонов попадет в цель — ядро атома лития — и вызовет ядерную реакцию, то есть придется затратить энергию в 220 тысяч раз бóльшую, чем та, которая выделяется при реакции. Аналогичные явления происходят и при многих других ядерных реакциях.

2. Энергия связи

Представим себе, что происходит образование ядра атома гелия из двух протонов и двух нейтронов. Физики с большой точностью измерили массы протона и нейтрона: первая равна 1,0076, а вторая— 1,0089 атомных единиц массы. Масса ядра атома гелия, определенная как сумма масс двух протонов и двух нейтронов, должна быть равна 4,0330 атомных единиц массы. Однако на самом деле она равна 4,0023 атомных единиц массы, то есть ядро атома гелия на 0,0302 атомных единиц массы легче массы двух протонов и двух нейтронов, составляющих это ядро. Отсюда следует, что при образовании атома гелия из протонов и нейтронов произошло изменение массы и выделилась энергия. Для того чтобы атом гелия вновь превратить в два протона и два нейтрона, необходимо затратить энергию, которая эквивалентна 0,0302 атомной единице массы. Величину этой энергии — энергии связи, можно найти, воспользовавшись уравнением взаимосвязи массы и энергии. Она равна 4,5 стотысячной доли эрга. Легко подсчитать, что при образовании грамма гелия из протонов и нейтронов выделится энергия, эквивалентная 1,62∙10>11 калориям тепла, или 190 000 киловатт-часов электроэнергии.

Подобная картина получается и при сравнении масс ядер атомов других элементов с суммой масс входящих в их состав протонов и нейтронов. Эта разность позволяет легко рассчитать энергию связи ядра.

В качестве единицы энергии в атомной физике принят электрон-вольт (эв) — кинетическая энергия, приобретенная электроном при прохождении им электрического поля с разностью потенциалов 1 вольт. Используются также более крупные единицы: 1 килоэлектрон-вольт (Кэв), равный 1000 эв, и 1 мегаэлектрон-вольт (Мэв), равный 1 000 000 эв[6]. В лабораторных условиях большая энергия заряженных частиц, необходимая для осуществления ядерных реакций, может быть получена в специальных установках, называемых ускорителями.

Оказывается, что полная энергия связи ядра тем больше, чем больше нуклонов в ядре. Энергия же связи, приходящаяся на один нуклон, изменяется неравномерно, что видно из приводимой ниже таблицы. Энергия связи, приходящаяся на один нуклон, больше всего у элементов, расположенных в середине периодической системы элементов Менделеева, таких, например, как криптон. У более тяжелых элементов она становится меньше. Она велика у гелия и мала у лития и дейтерия.


ИзотопМасса изотопаСумма масс нейтронов и протонов[7]Разность массПолная энергия связи в миллионах электрон-вольтЧисло нуклонов в ядреМасса, приходящаяся на 1 нуклонСредняя энергия связи нуклона в миллионах электрон-вольт
12345678
>1H>22,014702,017050,002352,1821,007351,09
>1H>33,017003,025980,008988,3331,005672,78
>2Не>44,003904,034190,0302928,2041,000987,05
>3Li>66,016976,051310,343131,9261,002835,32
>5В>1010,0161810,085390,0692164,4101,001626,44
>8O>1616,000016,13610,13661128,16161,000008,01
>10Ne>2019,9987720,170430,17186154,4200,999917,72
>30Kr>8281,93982,6950,756712,58820,99938,69
>78Pt>196196,039197,6901,6511536,641961,00027,84
>93Bi>209209,057210,2321,1751623,932091,00037,77
>92U>235235,109237,0241,9151645,002351,00047,00

В то же время различна и масса, приходящаяся на нуклон в ядрах различных атомов. Она больше всего у дейтерия, велика у лития, значительна у урана и других тяжелых элементов. Меньше всего значение массы, приходящейся на 1 нуклон, у элементов середины периодической системы элементов Менделеева (атомные веса от 40 до 100).


Рекомендуем почитать
Знание-сила, 2003 № 10 (916)

Ежемесячный научно-популярный и научно-художественный журнал.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Термоядерное оружие

Книга рассчитана на широкий круг читателей, интересующихся термоядерными процессами, термоядерным оружием, принципами его устройства и действия. В книге воины Советской Армии и Военно- Морского Флота познакомятся с наиболее мощным современным видом ядерного оружия — термоядерным оружием, а также с защитой от его поражающего действия. При ознакомлении с книгами серии следует учитывать, что международная система единиц СИ была принята только в 1960 году, а в СССР введена 1 января 1963 года, «в качестве предпочтительной»; теория «ядерной зимы» зародилась в 1983–1985 гг.


Физические основы получения атомной энергии

В настоящей книжке изложены основные вопросы ядерной физики, знание которых необходимо для понимания особенностей ядерной энергии и тех физических принципов, которые используются или предполагаются использоваться в ближайшем будущем для ее производства. Книжка рассчитана на широкий круг военных читателей со средним образованием, стремящихся познакомиться с новой областью науки, имеющей большое практическое значение.


Дмитрий Иванович Менделеев

В книге видного советского философа и историка науки Б. Г. Кузнецова рассказывается о жизни и деятельности великого русского ученого Дмитрия Ивановича Менделеева. Автор показывает сложный образ революционера в науке, величайшего химика, выдающегося технолога, патриота своей страны. Популярно излагается суть открытий и достижений ученого, их значение для развития современной науки, производства и военного дела.


О неслышимых звуках

Открытые в начале XX века ультразвуки нашли широкое применение в самых разнообразных областях науки и техники. Они помогают обнаруживать подводные лодки и различные препятствия на дне морей и рек, используются для промера глубин, для контроля качества металлических конструкций и деталей, для очистки воздуха, в медицине и фармацевтической промышленности и т. д. О том, что такое ультразвуковые волны, о способах их получения, свойствах и применении и рассказывает книга специалиста в области ультразвуков профессора доктора химических наук Бориса Борисовича Кудрявцева «О неслышимых звуках».