Пятьсот двадцать головоломок - [15]
148. Деление.
Не могли бы вы восстановить данный пример на деление, не стирая семерки и не заменяя их другими цифрами? Если вы попытаетесь решить задачу, считая, что все семерки заданы и других нет, то вы приметесь тем самым за явно безнадежную работу, хотя доказательство этого факта достаточно сложно. Задача решается сравнительно просто, если предположить, что любое число семерок разрешается ставить на любое место в промежуточных результатах (хотя вводить в делимое, делитель и частное другие семерки, кроме указанных в условии задачи, запрещается).
149. Без цифр.
Следует помнить, что головоломки, в которых цифры заменены звездочками, нельзя решить, если нет дополнительных условий или не указано хотя бы одной цифры. Быть может, следующая головоломка близка к идеалу, хотя в ней производятся два деления, связанные между собой тем условием, что первое частное равно второму делимому. По-видимому, эта задача имеет лишь одно решение.
150. Действия с буквами. Существует много общего между теми головоломками, в которых следует восстановить арифметические действия по нескольким заданным цифрам и большому количеству звездочек, и теми, где каждая цифра заменена вполне определенной буквой, причем разным буквам соответствуют разные цифры. И те и другие головоломки решаются аналогично. Вот небольшой пример задач второго типа (вряд ли его можно назвать трудным):
Можете ли вы восстановить это деление? Каждая цифра заменена своей буквой.
151. Арифметика букв. Вот головоломка с вычитанием, решение которой, возможно, доставит читателю несколько приятных минут.
Пусть АВ, умноженное на С, равно DE. Если DE вычесть из FG, то получится HI:
Каждая буква обозначает вполне определенную цифру (1, 2, 3, 4, 5, 6, 7, 8 или 9). Цифра 0 в записи примера не встречается.
152. Цифры вместо букв. Однажды утром профессор Рэкбрейн предложил своим юным друзьям следующую довольно трудную задачу. Он выписал буквы алфавита в следующем порядке:
— Каждая буква, — сказал он, — обозначает свою цифру от 1 до 9 (0 исключен). Четырехзначное число, умноженное на пятизначное, дает число, содержащее все 9 цифр в указанном порядке. Можете ли вы подставить цифры вместо букв так, чтобы выполнялось написанное равенство?
153. Тайна лавочника. Один лавочник, желая сохранить свои счета в тайне, выбрал слово из десяти букв (все разные) вроде ЗАЧЕРКНУТЬ, где каждая буква соответствует цифре в следующем порядке: 1, 2, 3, 4, 5, 6, 7, 8, 9, 0. Например, в случае приведенного выше ключевого слова ЗА означает 12, ЧЕР — 345 и т, д. Если сумма записана в таком коде, то каким ключевым словом пользовался лавочник? Найти ответ нетрудно.
154. «Пчелиный воск». В неком секретном коде слово BEESWAX[8] обозначает число. Полиция не могла найти ключ к этому коду до тех пор, пока среди бумаг не обнаружила следующую запись:
Сыщики предположили, что здесь изображена сумма, но никак не могли ее расшифровать. Затем одного из них осенила блестящая идея, что, быть может, здесь изображено не сложение, а вычитание. Догадка и в самом деле оказалась верной: подставив разные цифры вместо разных букв, сыщики разгадали код.
Какое число записывается в этом коде как BEESWAX?
155. От «неверного» к «верному».[9]
— Из двух «неверно» не сделаешь «верно», — сказал кто-то за завтраком.
— Я в этом не уверен, — возразил полковник Крэкхэм. — Вот вам пример (каждая буква обозначает свою цифру, а все зашифрованные цифры отличны от нуля):
Если вы подставите нужные цифры, то равенство будет выполнено. Это можно сделать несколькими способами.
156. Умножение букв. В этом маленьком примере на умножение пять букв соответствуют пяти различным цифрам. Каким именно? Среди цифр нет нуля.
157. Секретный код. У двух конспираторов был секретный код. Иногда в их переписке попадались несложные арифметические действия, имевшие совершенно невинный вид. Однако в коде каждая из десяти цифр обозначала свою букву алфавита. Так, однажды встретилась сумма, которая, после того как вместо цифр подставили соответствующие буквы, приняла вид[10]
Интересно было бы восстановить эту сумму, зная, что I и О обозначают соответственно цифры 1 и 0.
158. Буквенно-цифровая головоломка. Эту головоломку при верном подходе разгадать нетрудно:
Каждая буква обозначает свою цифру, и, разумеется, AC, BC и т. д. — это двузначные числа. Можете ли вы определить, какой цифре соответствует каждая буква?
159. Плата мельнику. Вот одна очень простая головоломка, хотя я встречал людей, которые размышляли над ней по нескольку минут.
Мельник брал в уплату за помол
всей муки. Сколько муки получилось из зерна крестьянина, если после уплаты мельнику у него остался один мешок?160. Куры и яйца. Вот новый вариант старой задачи. Хотя она и выглядит очень сложной и запутанной, при правильном подходе ее решить чрезвычайно легко.
Если полторы курицы несут полтора яйца за полтора дня, то сколько кур плюс полкурицы, несущихся в полтора раза быстрее, снесут десяток яиц с половиной за полторы недели?
161. Стада овец. Четыре брата решили пересчитать своих овец. Оказалось, что у Клода на десять овец больше, чем у Дана. Если бы Клод дал четверть своих овец Бену, то у Клода и Адама вместе стало бы столько же овец, сколько у Бена и Дана вместе. Если бы затем Адам дал одну треть Бену, Бен дал бы после этого четверть своих овец Клоду, который потом отдал бы пятую часть Дану, а Бен затем поделил бы четверть своих овец поровну между Адамом, Клодом и Даном, то у каждого оказалось бы равное число овец.
Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.
Сборник принадлежит перу одного из основоположников занимательной математики Генри Э. Дьюдени. Кроме беллетризованных задач на темы «Кентерберийских рассказов» Д. Чосера, в него вошло более 150 других логических, арифметических, геометрических, алгебраических задач и головоломок.Книга доставит удовольствие всем любителям занимательной математики.
«Наука не сводится к сумме фактов, как здание не сводится к груде камней». (Анри Пуанкаре) Автор теоремы, сводившей с ума в течение века математиков всего мира, рассказывает о своем понимании науки и искусства. Как выглядит мир, с точки зрения математики? Как разрешить все проблемы человечества посредством простых исчислений? В чем заключается суть небесной механики? Обо всем этом читайте в книге!
Таблицу умножения перестроена, сделана новая картинка. Объём материала для запоминания сокращён примерно в 5 раз. Можно использовать самую сильную – зрительную память (в прежних картинках таблицы это невозможно). Ученики запоминали таблицу за один – полтора месяца. В ней всего 36 "домиков". Умножение и деление учаться одновременно. Книга обращена к детям, объяснение простое и понятное. Метод позволяет намного облегчить деление с остатком и сокращение дробей. Метод признан Министерством Просвещения России как полезная инновация (Муниципальное образование, инновации и эксперимент 2013/1)
Для этой книги Алекс Беллос собрал 125 головоломок, созданных за прошедших два тысячелетия, вместе с историями об их происхождении и влиянии. Он выбрал самые захватывающие, увлекательные и стимулирующие работу мысли задачи. Эти головоломки можно считать математическими только в самом широком смысле: их решение требует логического мышления, но не требует глубоких знаний математики. Все эти задачи происходят из Китая, средневековой Европы, викторианской Англии и современной Японии, а также из других времен и мест. Это книга для тех, кто интересуется математикой и логикой и любит разгадывать головоломки. На русском языке публикуется впервые.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.