Пять нерешенных проблем науки - [8]
Гонка за частицами ширилась. Число циклотронов росло, а их устройство совершенствовалось. В приборе, именуемом синхротроном, ускоряющее поле синхронизировалось для обеспечения постоянного радиуса траектории у пучка частиц. На смену камере Вильсона пришла пузырьковая камера, где образование пузырьков в перегретом жидком водороде позволяло видеть следы частиц. Все это походило на исследование разметанного взрывом стога сена в поисках короткоживущих иголок. Так, одному аспиранту для диссертации пришлось изучить 240 тыс. снимков из пузырьковой камеры.
Итогом всех этих усилий стал настоящий бум частиц: их было найдено свыше ста. Нобелевский лауреат Энрико Ферми заметил своему студенту Леону Ледерману (впоследствии тоже Нобелевскому лауреату): «Молодой человек, если бы я мог упомнить названия всех элементарных частиц, я бы стал ботаником».
Появление кварков
Разросшееся скопище частиц создало в физике положение, сходное с тем, что переживала химия до появления Периодической таблицы Менделеева в 1869 году. В их основе должно лежать нечто общее, только вот что? Физики, исходя из теоретических соображений, пытались по — разному группировать частицы в поисках некоего порядка. Тяжелые и средние по массе частицы были названы адронами, а в дальнейшем их разбили на барионы и мезоны. Все адроны участвовали в сильном взаимодействии. Менее тяжелые частицы, названные лептонами, участвовали в электромагнитном и слабом взаимодействии. Но подобно тому как электроны, протоны и нейтроны нужны были для объяснения природы объявившегося скопища частиц, чтобы объяснить природу всех этих частиц, требовалось нечто более основательное.
В 1964 году американские физики Марри Гелл-Ман и Джордж Цвейг независимо друг от друга предложили новый подход. Все адроны, оказывается, состоят из трех более мелких частиц и соответствующих им античастиц. Гелл-Ман назвал эти новые элементарные частицы кварками, заимствовав название из романа Джеймса Джойса «Поминки по Финнегану», где герою в снах часто слышались слова о таинственных трех кварках. Эти (первые) три кварка, получившие названия верхний (и — от англ. up), нижний (d — down) и странный (s — strange), обладают дробным электрическим зарядом +2/3, -1 /3 и -1 /3 соответственно, а у их антикварков эти заряды противоположных.
Согласно данной модели протоны и нейтроны составлены из трех кварков: uud и udd соответственно, тогда как обширная группа вновь открытых мезонов состоит из пары кварк — антикварк. Например, отрицательный пион представляет собой сочетание нижнего кварка и верхнего антикварка. Кварки предлагались в качестве рабочей гипотезы, и, хотя они позволяли решить вопрос с упорядочиванием обширного собрания частиц с математической точки зрения, их существование не внушало доверия из-за отсутствия опытных данных.
В опытах протоны с нейтронами представляли собой размытые кусочки вещества, подобные атому согласно томсоновой модели «пудинга с изюмом». Однако эти частицы были значительно меньше атома, так что их нельзя было прощупать, обстреливая альфа-частицами, как проделал Резерфорд с атомами. Альфа-частицы были слишком крупными, и выведать что-либо с их помощью оказывалось невозможным.
Коллектив ученых Стэнфордского отделения Массачусетского технологического института на линейном ускорителе занимался изучением ядра, обстреливая электронами водород и дейтерий (тяжелый изотоп водорода, ядро которого содержит один протон и один нейтрон). Они измеряли угол и энергию рассеяния электронов после столкновения. При малых энергиях электронов рассеяные протоны с нейтронами вели себя как «однородные» частицы, слегка отклоняя электроны. Но в случае с электронными пучками большой энергии отдельные электроны теряли значительную часть своей начальной энергии, рассеиваясь на большие углы. Американские физики Ричард Фейнман и Джеймс Бьёркен, как и Резерфорд в работе по выявлению строения ядра с помощью альфа — частиц, истолковали данные по рассеянию электронов как свидетельство составного устройства протонов и нейтронов, а именно: в виде предсказанных ранее кварков. Теперь приходилось считаться с гипотезой существования кварков.
Теория наносит ответный удар: объединение
Физики всегда стремились упрощать возникающие вопросы сочетанием различных теорий. На исходе XIX века Джеймс Клерк Максвелл осознал, что электричество и магнетизм выражают собой две стороны одного и того же явления, и это позволило объединить их, а само явление получило название электромагнетизма. В 1950 — е годы американские физики Ричард Фейнман, Джулиус Швингер и японский физик Томонага Синъитиро соединили теорию электромагнетизма с квантовой механикой, создав квантовую электродинамику (КЭД). Согласно этой теории электроны взаимодействуют посредством обмена световыми фотонами. Сами фотоны наблюдать невозможно, поскольку электроны испускают и поглощают их в пределах, подпадающих под действие принципа неопределенности Гейзенберга. Из-за своей ненаблюдаемости они получили название виртуальных фотонов.
В последние годы своей жизни Никола Тесла печально и прозорливо говорил: «Сколько людей называли меня фантазером… Нас рассудит время!» В 1880-х годах позапрошлого века его идею переменного тока специалисты назвали бредом, а ныне весь мир пользуется устройствами, работающими благодаря этому открытию. Многие его гениальные проекты опередили время настолько, что и спустя столетие не смогли быть воспроизведены без чертежей и записей, которые ученый сознательно уничтожил, отказавшись от идеи сверхмощного оружия как сдерживающего фактора в развязывании мировой бойни.
Брошюра подписной научно-популярной серии "Новое в жизни, науке, технике" библиотечки "Космонавтика, астрономия" издательства "Знание", № 2 1988 г.Автор брошюры, ученый и известный писатель-фантаст, обсуждает роль научной фантастики в прогнозировании в области космонавтики и астрономия и сопоставляет некоторые приемы, используемые писателями-фантастами, с методами научно-технического прогнозирования.
Существует легенда о происхождении скифов от связи Геракла с полуженщиной-полуехидной, приключившейся на берегах Днепра-Борисфена. Об этом писал еще отец истории Геродот. Упоминал об этом мифе и Лев Гумилев. Однако особенностью данной книги является углубленное изучение всех аспектов возможных причин возникновения этого мифа. В рамках своего труда автор проводит сенсационные параллели между Гераклом и героем древнерусских былин Ильей Муромцем, между библейским Эдемом и садом Гесперид, находит изображение Геракла на Збручском идоле и делает вывод, что Геродотовы будины, гелоны, навры — праславяне, поклонявшиеся Гераклу как богу.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Статья 1988–1989 гг. о ленинградской ветви фантастической «новой волны» — о писателях семинара Б. Стругацкого.Имеет историческое значение.
Его имя мало кто знает, хотя весьма популярны и прославлены имена Винера и Берталанфи, развивавших его идеи.