Пять нерешенных проблем науки - [59]
Надеемся, что эти идеи смогут удовлетворить ваше любопытство или даже разжечь его. В будущем удастся решить некоторые из этих проблем, но им на смену придут другие.
1. Антивещество
Почти каждой элементарной частице соответствует античастица. Как правило, античастицы обладают той же массой, что и их обычный собрат с зарядом одинаковой величины, только противоположного знака. Как видно на рис. 1.1, каждому кварку соответствует свой антикварк (антиверхний, антиочарованный…), каждому лептону — свой антилептон (антиэлектронное нейтрино, антимюонное нейтрино…), а W — и W'-бозону — свои античастицы. Лишь у фотона, Z-бозона, глюона (всего восемь разновидностей) и гипотетического гравитона нет античастиц. Иначе говоря, они сами служат для себя античастицами.
Рис. I.1. Основные частицы
Как упоминалось в гл. 2, антивещество было предсказано теорией, когда в 1928 году британский физик П. А. М. Дирак объединил квантовую механику со специальной теорией относительности. Сходным, но более простым примером здесь могут послужить решения уравнения х>2 = 9, равные +3 и —3. Зачастую при наличии у уравнения двух решений одно обычно отбрасывают, считая не имеющим физического смысла. Ученые пытались исключить решение уравнения Дирака, допускавшее существование подобной электрону частицы, но несущей положительный, а не отрицательный заряд. Но спустя четыре года [1932] американский физик Карл Андерсон представил опытные свидетельства существования позитрона при исследовании космических лучей, так что предсказание подтвердилось. В 1955 году в Калифорнийском университете Эмилио Сегре и Оуэн Чемберлен наблюдали антипротон, а антинейтрон обнаружился годом позже.
Событие, сотворившее электрон и позитрон в диффузионной камере у Андерсона в 1932 году, именуют рождением пар. Световой фотон в космических лучах отдает всю свою энергию, которая превращается в массу в соответствии с уравнением Эйнштейна Е = mc>2. При столкновении электрона с позитроном их масса полностью переходит в энергию, так что в итоге два световых фотона разлетаются в противоположные стороны. Данный процесс называют аннигиляцией, и он состоит в превращении массы в энергию, величина которой вновь определяется уравнением Эйнштейна.
Теоретически ничто не может помешать антипротонам соединиться с антинейтронами для образования антиядер, а антиэлектронам примкнуть к этим антиядрам с образованием антиатомов. И действительно, в 1995 году в Европейской лаборатории физики элементарных частиц возглавляемому немецким физиком Вальтером Олертом коллективу ученых удалось получить девять атомов антиводорода. Только не подумайте, что эти антиатомы устроили переполох в лаборатории. Ввиду подавляющего перевеса обычного вещества девять атомов антиводорода не продержались и сорок миллиардных секунды.
Научная фантастика привлекает огромное количество антивещества, особенно в качестве топлива для космических кораблей. Наибольшая трудность в создании движителя на основе антивещества сопряжена с его хранением и радиоактивным загрязнением. Как бы ни бились инженеры над созданием космических кораблей, работающих на основе антивещества, встает вопрос о безопасности, поскольку один грамм аннигилирующего вещества (антивещества) выделяет энергию, сравнимую с энергией сброшенной в 1945 году на Японию атомной бомбы.
Не существуют ли где-то в далекой галактике или даже в Млечном Пути залежи антивещества? В конце концов, если бы единственной связью с этими галактиками для нас служили излучаемые ими световые фотоны, мы оставались бы в неведении. Фотон — сам себе античастица, так что мы не могли бы отличить обыкновенные галактики от галактик из антивещества, поскольку от тех и других исходили бы фотоны. Все это верно, однако постоянно обрушивающиеся на нас космические лучи содержат не одни фотоны, только никакого неведомого антивещества там нет. Кроме того, в случае протон — антипротонной аннигиляции на краю антигалактики излучался бы свет определенной частоты. Такого света пока не наблюдалось. Похоже, что Вселенная почти целиком состоит из обычного вещества.
Однако отсутствие антивещества порождает другую трудность. Если населяемая нами Вселенная симметрична, то при «большом взрыве» должно было появиться одинаковое количество вещества и антивещества, и они бы полностью взаимно уничтожились. Некому тогда было бы обсуждать этот вопрос. Куда же делось антивещество? Согласно одной теории, возникла антивселенная, которая где-то затерялась, возможно на одной из «бран» из М — теории (см. гл. 2).
Недавние опыты указывают на асимметрию в скорости распада некоторых видов вещества и антивещества. Мезоны, двухкварковые частицы, нестабильны, и поэтому их нет в обычном веществе. Лишь разновидность мезонов — К-мезон был тщательно изучен. Различную скорость распада у К-мезона и антиК-мезона обнаружила в 1957 году физик из Колумбийского университета By Цзяньсюн. В 2001 году опыты на ускорителях в Стэнфордском университете и в японском академгородке Цукуба [расположенном в 35 км к северо-востоку от Токио] выявили асимметрию в распаде В-мезонов и антиВ-мезонов, где антиВ-мезоны распадались чуть быстрее. Величина асимметрии будет уточняться по мере получения данных в ходе этих долгосрочных исследований.
Послевоенные годы знаменуются решительным наступлением нашего морского рыболовства на открытые, ранее не охваченные промыслом районы Мирового океана. Одним из таких районов стала тропическая Атлантика, прилегающая к берегам Северо-западной Африки, где советские рыбаки в 1958 году впервые подняли свои вымпелы и с успехом приступили к новому для них промыслу замечательной деликатесной рыбы сардины. Но это было не простым делом и потребовало не только напряженного труда рыбаков, но и больших исследований ученых-специалистов.
Настоящая монография посвящена изучению системы исторического образования и исторической науки в рамках сибирского научно-образовательного комплекса второй половины 1920-х – первой половины 1950-х гг. Период сталинизма в истории нашей страны характеризуется определенной дихотомией. С одной стороны, это время диктатуры коммунистической партии во всех сферах жизни советского общества, политических репрессий и идеологических кампаний. С другой стороны, именно в эти годы были заложены базовые институциональные основы развития исторического образования, исторической науки, принципов взаимоотношения исторического сообщества с государством, которые определили это развитие на десятилетия вперед, в том числе сохранившись во многих чертах и до сегодняшнего времени.
Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.
Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.
Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.
Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.