Путевые заметки рассеянного магистра - [10]
«Подкрепление», приготовленное Таней, уничтожалось шумно и весело, после чего Нулик торжественно объявил, что снова готов к научной работе и попросил разрешения высказаться.
— Хочу отметить, — сказал он, — что, поднявшись на гору по канатной дороге, Магистр и впрямь оказался на высоте. Ему надо было сосчитать число камешков, покрывавших ступеньки, то есть найти сумму членов арифметической прогрессии от ста до пятисот. Для этого он воспользовался правилом, изобретённым Гауссом. И напрасно хранитель водопада отказался везти Магистра наверх. Я кончил.
— А я начинаю, — подхватил Олег. — Да будет тебе известно, что вычислять сумму членов арифметической прогрессии умели задолго до Гаусса. Однако правило это в самом деле связано с именем этого замечательного немецкого математика. Говорят, когда Гаусс был ещё школьником, учитель предложил однажды ученикам сложить все целые числа от единицы до сорока. Не успел он продиктовать своё задание, как семилетний Гаусс объявил, что ответ готов. Учитель, конечно, ему не поверил и даже пригрозил наказать за неуместную шутку. Но как же он удивился, когда увидал, что решение и в самом деле совершенно верное! Мальчик заметил, что равно-отстоящие от концов прогрессии числа (1 и 40, 2 и 39, 3 и 38 и так далее) при сложении образуют одно и то же число: 41. А так как таких пар было 20, он умножил 20 на 41 и получил ответ: 820. Так маленький Гаусс своим умом дошёл до того, что было давно известно. Так что именем Гаусса Магистр назвал правило зря. Да и воспользовался он этим правилом неправильно. Верно сложил первое и последнее число, то есть 100 и 500, так же верно разделил сумму 600 на два и получил 300. Но вот дальше стал умножать 300 на число ступенек, которых было не 400, как он думал, а 401. Значит, и камешков на все рисунки ушло не 120 000, а 120 300.
— Допустим, — согласился президент, — но уж градусник действительно был испорчен. Тут Магистр прав. На вершине скалы мороз, а ртуть поднялась до 28 градусов выше нуля!
— Ай-ай-ай! — Таня укоризненно покачала головой. — А ещё президент. Неужели ты не догадался, что там висел термометр Фаренге́йта?
Нулик хихикнул. Его всегда смешат незнакомые иностранные фамилии.
— Какой такой Фаренгейт?
— Вот такой. Немецкий физик XVIII века. Он предложил термометр со шкалой, где точка таяния льда обозначена не нулём, как на градуснике Цельсия, а числом 32. А точка кипения воды — не 100, а 212 градусов. Эта шкала и до сих пор употребляется в Англии и Америке. И 28 градусов по Фаренгейту — это около двух градусов мороза по Цельсию. Не мудрено, что у Магистра озябли руки.
Нулик рассеянно гладил Пончика, который тоже заметно скучал и тихо поскуливал. Видимо, президента уже утомила чересчур интенсивная умственная деятельность, и он довольно вяло воспринял замечание Севы о том, что охотник, встреченный Магистром, никак не мог быть энтомологом, потому что охотился на зверей, а энтомолог — специалист по насекомым.
Между тем Сева заслуживал большего внимания: он прекрасно решил задачу о пойманных охотником зверях, приняв число жирафов за единицу, а число муравьедов за икс. И так как жирафов было больше, чем утконосов, во столько же раз, во сколько утконосов больше, чем муравьедов, то вышло, что утконосов было x>2. Ну, а всего зверей в семь раз больше, чем жирафов. Следовательно, 1+x+x>2=7. Отсюда x+x>2=6.
Оставалось подумать, какое же число, сложенное со своим квадратом, может быть равно шести. Только двойка! 2+2>2=6. Тот же ответ можно получить, если решить по всем правилам квадратное уравнение x+x>2-6=0.
Итак, Сева убедительно доказал, что жирафов было вдвое больше, чем муравьедов, а муравьедов вдвое больше, чем утконосов. А так как Магистр знал, что жирафов было 10, то ясно, что муравьедов охотник поймал 20, а утконосов — 40. А всего зверей оказалось 70. Но самое смешное, что, решив задачу. Сева тут же указал на её бессмысленность, потому что, оказывается, ни муравьеды, ни утконосы в Африке не водятся…
Разбором двух последних ошибок Магистра занялся Олег.
— Допускаю, — сказал он, — что Магистр мог по карте принять озеро Чад за прямоугольник и даже на глазок прикинуть, что стороны его равны 120 и 240 километрам. Но вот назвать сумму сторон прямоугольника не периметром, а параметром это уж ни в какие ворота не лезет! Ведь параметр-постоянная величина, которая может, впрочем, иметь в различных случаях разные значения. Вот, например, в полёте — космический корабль. Чем определяется его орбита? Его параметрами: наибольшим и наименьшим удалениями от Земли, наклоном орбиты, временем обращения вокруг Земли и так далее. Однако эти постоянные величины будут совсем иные при другом полёте. Хотя и в одном полёте космонавт может сам менять параметры своей орбиты.
— И, наконец, последнее, — продолжал Олег. — Магистр назвал луч ла́зера квазаром. Но ведь это же совершенно разные вещи!
— Кто бы мог подумать! — изумился президент. — Я бы ни за что не отличил.
— Положим, отличил бы, если бы знал, что квазар — невероятно отдалённый от нас небесный объект, а лазер — устройство для получения искусственного луча света.
В сборник вошли повести Владимира Лёвшина о приключениях незадачливого путешественника Магистра Рассеянных Наук и его неизменной спутницы Единички: «Диссертация Рассеянного Магистра», «Путевые заметки Рассеянного Магистра» и «В поисках похищенной марки». Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Он то и дело совершает ошибки, которые анализируют школьники Клуба «Рассеянного Магистра».
Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Его рассказы, полные самых невероятных приключений и ещё более невероятных ошибок, развивают наблюдательность, совершенствуют математическую логику и убедительно подтверждают справедливость древней истины: на ошибках учатся.Для младшего школьного возраста.
Заблудиться в лабиринте чисел очень просто. Но если вашим проводником согласится стать сама многоуважаемая Арифметика, путешествие удастся на славу. Каждая остановка, а их будет тридцать две (по числу букв алфавита) подарит вам незабываемые впечатления, а задачи, которые Арифметика иногда будет подкидывать своим спутникам, внесут ещё большее разнообразие в этот и без того прихотливый маршрут. Замечательная книга о приключениях мальчика Чита в Лабиринте Чисел и о его проводнице — Арифметике. В увлекательной форме знакомит детей со многими математическими и логическими понятиями.
Книга о свойствах чисел и их закономерностях. Действие происходит в сказочном математическом городе, где в столе находок разыскивают числа по их приметам. Жители города Энэмска знают — числа живут особенной жизнью и дружба с ними сулит приятные неожиданности и нечаянные открытия. Разумеется тем, кто знает их законы.Многие, наверное, читали книги Левшина В. и Александровой Э. «Путешествие по Карликании и Аль-Джебре», «Фрегат капитана Единицы», «Магистр Рассеянных Наук» и другие, которые привили любовь к математике не одному человеку.
«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники.
Очерки посвящены истории и технике создания теплоходов от первых попыток корабельного строительства до наших дней. Для среднего и старшего возраста.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Сборник посвящен памяти Александра Павловича Чудакова (1938–2005) – литературоведа, писателя, более всего известного книгами о Чехове и романом «Ложится мгла на старые ступени» (премия «Русский Букер десятилетия», 2011). После внезапной гибели Александра Павловича осталась его мемуарная проза, дневники, записи разговоров с великими филологами, книга стихов, которую он составил для друзей и близких, – они вошли в первую часть настоящей книги вместе с биографией А. П. Чудакова, написанной М. О. Чудаковой и И. Е. Гитович.
Печенье с шоколадной крошкой, мороженое в вафельном рожке, рюкзак-кенгуру, дворники для ветрового стекла, жидкий корректор, космический бампер, компилятор для компьютера, светящаяся бумага…У каждого из этих изобретений своя история. Рюкзаки-кенгуру были сшиты в курятнике. Жидкий корректор замешивали на кухне, а разливали в гараже. Шоколадное печенье появилось из-за спешки, а Пэтси Шерман не придумала бы пропитку для ткани, если бы не уронила на пол бутылочку с латексной смесью.Истории, рассказанные в этой книге уникальны, но объединяет их одно: все изобретения придумали обычные женщины и маленькие девочки.
Дорогие читатели?Если вы уже знакомы с незадачливым героем книги В Лёвшина "Магистр Рассеянных Наук", если уже сталкивались с бесчисленными ошибками и оговорками этого рассеянного математика, вам, вероятно, интересно будет узнать о его новых путешествиях и приключениях, а заодно снова встретиться с постоянными членами Клуба Рассеянного Магистра — Таней, Севой, Олегом и Нуликом.Если же Магистр Рассеянных Наук для вас лицо новое, не смущайтесь: эта книга — совершенно самостоятельная история о том, как Магистр возомнил себя великим сыщиком и отправился в далёкие страны вместе со своей неизменной спутницей Единичкой, а также с твёрдым намерением расследовать дерзкое преступлениеОсобая к вам просьба: читая рассказы отважного, но рассеянного путешественника, старайтесь не пропустить ни одной его несуразицы, ни одной оплошности.