Путешествие в страну микробов - [16]
Через двести лет после первых наблюдений Левенгука известный немецкий физик-оптик XIX века Эрнст Аббе установил, что разрешающая способность оптических микроскопов ограничена длиной световых волн. Наименьшие объекты, видимые в оптическом микроскопе (с применением ультрафиолетовых лучей и так называемых иммерсионных объективов), должны иметь размеры не менее сотой части нанометра, или нескольких десятитысячных долей миллиметра. Это значит, что самые мелкие бактерии находятся где-то около предела видимости наиболее совершенного оптического микроскопа. Казалось, что эти пределы так и не удастся превзойти.
Но шли годы, и появился фазово-контрастный микроскоп. Его изобрел в 1935 году голландский физик Цернике, получивший за свое открытие спустя двадцать лет Нобелевскую премию. Фазово-контрастный микроскоп, будучи также оптическим микроскопом, не преодолел нижней границы наблюдаемых размеров, но зато получил большое преимущество перед своим предшественником — с его помощью можно было наблюдать живые клетки микроорганизмов, что далеко не всегда удается в обычных оптических микроскопах. Чтобы хорошо рассмотреть препарат в световом микроскопе, бактерии умерщвляют, а затем окрашивают; при этом всегда существует опасность изменения структуры клеток.
Значительно важнее наблюдать их в живом, естественном состоянии. Для непосвященного читателя достаточно будет сказать, что фазово-контрастный микроскоп обладает специальным приспособлением, которое может изменять длину пути световых волн, исходящих от наблюдаемого объекта, благодаря чему возникает «фазовый сдвиг на одну четвертую длины волны». В результате усиливается рельеф, что позволяет увидеть некоторые малые элементы структуры клеток.
Родствен фазово-контрастному микроскопу и интерференционный микроскоп. Такой тип микроскопа, сконструированный физиком Номарским, позволяет детально рассматривать поверхность микробных клеток.
Приблизительно в это же время появился и электронный микроскоп, без которого теперь нельзя даже представить работу цитологов и микробиологов. Первый электронный микроскоп сконструировали и представили научной общественности сотрудники Высшей технической школы в Берлине Макс Кнолль и Эрнст Руска. Роль световых лучей, благодаря которым в других микроскопах получается увеличенное изображение наблюдаемых объектов, в электронном микроскопе играют пучки электронов. Их движением управляют электромагниты, выполняющие функцию оптических линз. Современный электронный микроскоп дает нам возможность получать увеличение объекта в несколько сот тысяч раз.
Но при таком наблюдении клетки бактерий иногда оказываются чрезмерно большими и лучи электронов не могут проходить сквозь них. Поэтому для исследования внутреннего строения клеток в помощь электронному микроскопу призывается особый микрохирургический аппарат — ультрамикротом. Он позволяет получать сверхтонкие срезы клеток и таким образом подготавливать их к наблюдению в электронном микроскопе.
Вообще, надо сказать, работники электронной микроскопии в этом деле настоящие мастера. Клерки, предназначенные для наблюдения, они сначала заливают особым веществом аралдитом, которое быстро затвердевает, а потом разрезают их ультрамикротомом. Таким способом можно разрезать белое кровяное тельце (диаметром около 15 мкм) на 750 тончайших срезов, каждый из которых не толще 0,02 мкм!
Однако у электронного микроскопа есть и один крупный недостаток — в нем можно наблюдать лишь мертвые клетки. Это связано с тем, что молекулы воздуха представляют для электронов непреодолимое препятствие, поэтому все наблюдения должны проводиться в безвоздушном пространстве (вакууме), а это приводит к немедленному обезвоживанию и гибели всех живых клеток.
Профессора Дюпуи, Перрье и Дюрриё из Института электронной микроскопии в Тулузе (Франция) решили устранить и это препятствие. Поток электронов в обычном электронном микроскопе разгоняется при помощи напряжения порядка 100 000 В. Дюпуи и его коллеги используют напряжение 1 500 000 В, в результате чего скорость электронов достигает 291 000 км в 1 с, то есть почти приближается к скорости света. Для решения этой задачи ученым пришлось преодолеть целый ряд технических трудностей. Необходимо было обеспечить защиту обслуживающего персонала от вредного воздействия рентгеновских лучей, возникающих при попадании электронов на металлические части аппарата, надо было создать электромагнитные линзы, весящие до 700 кг, из которых 100 кг приходится на 29 000 витков медной спирали. Но поскольку при таком высоком напряжении большую опасность представляет еще и влажность, все сооружение необходимо было поместить в металлическую сферу диаметром 24 м. Ускоренные в своем движении электроны проникают не только сквозь тончайший слой воздуха, но и через живые клетки бактерий. Хотя продолжительное действие электронов и наносит им повреждения, а позднее и убивает, тем не менее при наблюдении под микроскопом клетки какое-то время остаются живыми и неизмененными (фото 18).
Описанные методы, как, впрочем, и многие другие, позволяют нам проводить исследования в «субмикромире» клетки и открывать его тайны.
Acacia mangium — это быстрорастущее тропическое вечнозеленое дерево, которое при благоприятных условиях может вырасти до 30 м в высоту и до 50 см в толщину. Низинный вид, связанный с окраинами тропических лесов и нарушенными, хорошо дренированными кислыми почвами. Аборигенное растение для Папуа, Западной Ириан-Джайи и Молуккских островов в Индонезии, Папуа-Новой Гвинеи и северо-восточной части Квинсленда в Австралии. Из-за быстрого роста и устойчивости к очень бедным почвам A. mangium была завезена в некоторые страны Азии, Африки и западного полушария, где она используется в качестве плантационного дерева.
«Ой, фу!» Табу в нашем мире живут столько же, сколько существует общество. Все мы стремимся быть ухоженными, хорошо пахнуть, но стоит нам остаться наедине с самим собой, как наше тело начинает жить собственной жизнью: палец сам тянется к ноздре – избавиться от накопившегося содержимого, нос – понюхать собственную кожу на предмет чужеродных запахов, а живот… Живот спешит скорее «выдохнуть» все, что копил в себе целый день. Все это – естественно, но мы упорно продолжаем этого стесняться. А стеснение нередко приводит к неприятным казусам в повседневности, личной жизни и даже к проблемам со здоровьем.
Эта книга была написана в 1996 году в рамках природоохранной кампании, проведённой Аризонским музеем пустыни Сонора (США), но затрагивает широкий круг вопросов, связанных с опылением, которые являются актуальными, пожалуй, для всего мира. В книге рассказано о процессе опыления у цветковых растений, о приспособлениях растений к опылению насекомыми и другими животными, об эволюции опыления. Авторы рассказывают об опасностях, с которыми сталкиваются опылители в наше время, о медоносных пчёлах и их конкуренции с аборигенными животными-опылителями.
В книге освещены важнейшие события в познании живой природы и формирование современных отраслей биологии до начала XX в. Отобраны факты, имена и события, которые характеризуют магистральные линии развития биологии, раскрывают характер и уровень биологических знаний соответствующих эпох. Подобная книга на русском языке издается впервые. Она рассчитана на широкий круг научных работников, преподавателей, аспирантов и студентов биологических факультетов. Илл. 132. Библ. на 36 стр. Книга подготовлена авторским коллективом в составе: Е.Б.
«280 дней до вашего рождения. Репортаж о том, что вы забыли, находясь в эпицентре событий» рассказывает ИСТОРИЮ О ВАС от зачатия до рождения, от первой клетки до девяти месяцев спустя, когда вы решили появиться на этот свет. Знаете ли вы, что в начале XX века выражение «КРОЛИК УМЕР» означало, что женщина беременна? Или то, что крошечный морской червь bonellia viridis проводит всю свою жизнь в своей же самке, являясь ее личным донором спермы? Это всего лишь два из очень необычных фактов, которые вы найдете в книге Катарины Вестре, рассказывающей нам все о чудесном процессе развития человека в утробе матери.
Если вы читали о динозаврах в детстве, смотрели «Мир юрского периода» и теперь думаете, что все о них знаете, – в этой книге вас ждет много сюрпризов. Начиная c описания мегалозавра в XIX в. и заканчивая открытиями 2017 г., ученые Даррен Нэйш и Пол Барретт рассказывают о том, что сегодня известно палеонтологам об этих животных, и о том, как компьютерное моделирование, томографы и другие новые технологии помогают ученым узнать еще больше. Перед вами развернется история длиной в 150 миллионов лет – от первых существ размером с кошку до тираннозавра и дальше к современным ястребам и колибри.