Противодействие беспилотным летательным аппаратам - [65]

Шрифт
Интервал

1. В сравнении со средствами ПВО, лазерные средства поражения не расходуют какой-либо ресурс материальных средств (снаряды, ракеты и т. п.), при этом возможности непрерывной работы на отражение массированного налета группы БПЛА ограничены исключительно энергоемкостью источника питания, а при наличии стационарного питания — ограниченны режимом непрерывной работы генератора лазерного ЭМИ на излучение.

2. В сравнении со средствами РЭП лазерные средства поражения, обеспечивают однозначный эффект прекращения полета БПЛА за контролируемую зону путем его нагрева с последующем разрушением. Причем данный эффект не завит от достоверности предварительного вскрытия параметров командной радиолинии управления или эффективности постановки помех. Средства поражения лазерным излучением обладают высокой избирательностью, могут применяться против БПЛА, осуществляющих полет в режиме «радиомолчания» и по автономной программе, днем и ночью, в условиях как мирного, так и военного времени, в том числе — в черте городской застройки и на промышленных объектах.

3. В сравнении со средствами поражения СВЧ ЭМИ при сопоставимой эффективности лазерные средства поражения не требуют проведения масштабных мероприятий по обеспечению ЭМС с другими РЭС, а также мероприятий по электромагнитной безопасности операторов данных средств.

Вероятность функционального поражения БПЛА без отражателей и защитных экранов P>пор с помощью лазерного излучения можно определить по выражению[427]:

P>пор = P>обнP>навP>удP>разр,

где:

P>обн — вероятность обнаружения БПЛА в интересах выдачи целеуказания на лазерное средство поражения. Обнаружение может производиться как РЛС так и ОЭС, при этом подробные вероятностно-дальностные оценки обнаружения БПЛА представлены в главе 2;

P>нав — вероятность успешного наведения лазерного луча на БПЛА. Для механической следящей системы этот показатель применительно к рассмотренным выше условиям находится на уровне 0,8–0,87[428];

P>уд — вероятность удержания лазерного луча на БПЛА в течение заданного времени. Для БПЛА летящего прямолинейно с постоянной скоростью P>уд ≈ 0,9. Для БПЛА маневрирующего с перегрузкой g≥1,7 вероятность удержания луча составляет P>уд≤0,3[429];

P>разр — вероятность того, что воздействие лазерного луча на конструкцию БПЛА приведёт к её разрушению, возгоранию, взрыву горючего или боеприпаса. При возможности точной идентификации цели эта величина может достигать значения P>разр→1. В других случаях, прожиг пустотелого корпуса или плоскости крыла, к фатальным последствиям для БПЛА не приведет. По крайней мере, все попытки повредить вращающийся воздушный винт БПЛА во время экспериментов окончились безрезультатно[430]. Кроме того, на эту вероятность влияют факторы трассы распространения луча — облачность, дымка, туман, осадки резко снижают вероятность разрушения P>разр даже при условии высоких показателей обнаружения, наведения и удержания луча.

К недостаткам и проблемным вопросам использования лазерных средств поражения можно отнести следующее.

1. Эффективность лазерных средств поражения существенно зависит от метеоусловий. Низкая облачность, дымка, туман, осадки, все это резко снижает эффективность применения данных средств.

2. Эффективность лазерных средств поражения может быть существенно снижена, фактически сведена к нулю, применением одиночными или группой БПЛА таких элементарных способов маскировки как распыление аэрозолей типа «дымовая завеса».

3. Лазерные средства поражения требуют высокоточного внешнего целеуказания, как правило, от РЛС или ОЭС обнаружения БПЛА.

4. Для достижения эффекта поражения БПЛА требуется удержание лазерного луча на цели в течение 0,5-15 с, что на высоких дальностях и при маневренном полете БПЛА является достаточно сложной технической задачей.

5. С развитием и широким распространением технологий лазерного поражения ожидается переход к использованию в корпусах БПЛА материалов, специально ориентированных на отражение или рассеивание лазерного излучения.

В целом отметим, что современные лазерные системы находятся только в начале своего пути в качестве эффективной системы ПВО и противодействия БПЛА. Научно-исследовательский задел 2010-х гг., полученный при проведении испытаний первых образцов лазерного вооружения, позволил сформировать основные принципы построения лазерных комплексов ПВО — использование твердотельных и волоконных лазеров, а также построение лазерных систем по модульному принципу, путем объединения нескольких лазерных генераторов в единый комплекс. Однако несмотря на наличие успешно работающих прототипов, вопросы объединения большого числа генераторов, объединение генераторов высокой мощности, синхронизация их работы и сведение всех лучей на цели на высокой дальности, повышение КПД лазерных систем, а также создание эффективных систем теплоотведения — это сложные технические задачи, которые до конца еще не решены.

7. Другие средства и способы противодействия БПЛА

7.1. Противодействие БПЛА с использованием специальных БПЛА-перехватчиков

Данный способ противодействия БПЛА является одним из наименее проработанных, однако, в перспективе — одним из наиболее перспективных.


Рекомендуем почитать
Юный техник, 2014 №  01

Популярный детский и юношеский журнал.


Юный техник, 2013 № 12

Популярный детский и юношеский журнал.


Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


В поисках марсианских сокровищ и приключений

«Новый Марс» — это проект жизни на Марсе через 200 лет. Вторая книга, которая окажется на Марсе. Первая — «Будущее освоение Марса, или Заповедник „Земля“». «Новый Марс» включает в себя 2 части: «Марсианская практика в лето 2210» и «В поисках марсианских сокровищ и приключений». Перед вами продолжение художественной повести с далеко ведущей целью: превращение планеты Земля в ядро глобального галактического Заповедника!


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.