Противодействие беспилотным летательным аппаратам - [64]

Шрифт
Интервал

.

В 2015 г. немецкая оборонная компания MBDA на Парижском авиасалоне представила лазерную установку мощностью 40 кВт, которая может сбивать мини-БПЛА в радиусе 3–5 км и успешно использовалась по воздушным целям на расстоянии более 2 км и высоте 1 км. Для подсветки цели и более точного наведения боевого лазера предполагалось использовать еще один лазер малой мощности. При этом ранее компания MBDA испытала лазерную установку мощностью 20 кВт, которая успешно уничтожила мини-БПЛА на расстоянии 500 м, затратив на это 3,4 с. В модернизированной установке были использованы 4 лазера мощностью по 10 кВт, лучи которых фокусировались с помощью системы зеркал. Коэффициент полезного действия (КПД) составлял около 30 %. Благодаря модульному принципу можно собирать и более мощные установки. Инженеры MBDA сочли оптимальным использование от 4 до 6 лазерных модулей в установке, что позволит сохранить небольшие габариты всей системы. Компания также планировала разработать самоходную лазерную установку с переменной мощностью от 5 до 20 кВт[423].

Отечественные производители средств поражения БПЛА также работают в направлении использования лазерных средств поражения для противодействия БПЛА. Так на выставке «Армия-2020» отечественные производители представили мобильный комплекс «Рать» предназначенный для борьбы с БПЛА с ЭПР порядка 0,01 м². Комплекс обнаруживает БПЛА с ЭПР 0,01 м² двигающихся со скоростью до 200 км/ч с помощью РЛС на дальности до 3,5 км. Противодействие БПЛА данным комплексом носит интегрированный характер — на дальности от 2,5 км используются средства РЭП, подавляющие каналы радиосвязи ПУ — БПЛА в диапазоне 2–6 ГГц, а также средства ФП ЭМИ с целью поражения бортовых РЭС БПЛА; на дальности от 1 км против БПЛА применяется генератор лазерного излучения, по заявлению производителя, гарантированно поражающего малые БПЛА путем их нагрева и разрушения[424].

6.3. Эффективность поражения БПЛА лазерным излучением

Обобщая вышесказанное, можно сделать вывод, что функциональное поражение БПЛА существующими лазерными комплексами достигается за счет возникновения одного или нескольких эффектов:

— поражение электронных приборов, прежде всего матриц приемников ОЭС бортовой аппаратуры наблюдения БПЛА путем прямого воздействия сильного узконаправленного лазерного ЭМИ;

— нагревание до высоких температур материалов БПЛА, с последующим их возгоранием, расплавлением или разрушением;

— индуцирование плазмы, порождаемой взаимодействием лазерного ЭМИ и твердого вещества (например, пластикового корпуса) БПЛА;

— лазерные средства могут применяться совместно со средствами огневого поражения ПВО для «подогрева» цели, в интересах повышения ее «видимости» для ИК-головок самонаведения ГСН ЗУР комплексов ПВО.

Подавляющее число существующих лазерных комплексов из вышеуказанных эффектов, в основном используют только первые два — поражение ОЭС и поражение конструкции БПЛА путем его нагрева. Рассмотрим их более подробно.

Одним из основных элементов БПЛА, подвергающихся лазерному излучению, является фото- видео-приемник ОЭС. Рассмотрение воздействия излучения большой мощности на фотоприемники основывается на процессах взаимодействия лазерного излучения с полупроводниками, из которых изготавливают приемники оптического излучения ОЭС. Экспериментальные исследования показали, что при плотности энергии лазерного излучения 5∙10>-3 — 10>-2 Дж/см² и длительности импульсов 0,3 с температура наружной поверхности фильтра на площади, куда попало излучение, превышает температуру плавления его поверхностного слоя. При плотностях энергии импульсного лазерного излучения на входном зрачке ОЭС порядка 10-2 Дж/см² происходит быстрый нагрев приемника излучения до высокой температуры. Такие уровни облучения могут быть созданы лазерным источником с энергией излучения в импульсе 200–300 Дж на дальностях порядка 5 км[425].

Что касается поражения БПЛА путем его нагрева, то здесь необходимо отметить, что такой способ поражения зависит от мощности лазерного ЭМИ и времени удержания лазерного луча на БПЛА. Результаты испытаний показывают, что для теплового поражения БПЛА требуется удержание на нем лазерного луча мощностью 2 кВт в течении 10–15 с, а луча 20–50 кВт — 0,5–5 с. Такая длительность удержания луча на цели является существенной проблемой на высоких дальностях поражения (свыше 10 км). Например, для того, чтобы попасть в отсек с двигателем БПЛА с размахом крыла 1 м на удалении 2 км требуется угловая точность наведения лазерного луча не хуже 0,00145°. Поскольку БПЛА находится в движении и маневрирует, то реальная точность ориентации лазерного луча для получения эффекта поражения БПЛА должна быть еще на порядок выше. Выдержать это требование в ближайшее время вряд ли будет возможно[426].

Сегодня функциональное поражение БПЛА является еще экспериментальной технологией. Однако, результаты испытаний первых прототипов позволяют утверждать, что именно данный тип поражения малых коммерческих БПЛА имеет высокую эффективность и наилучшие перспективы развития. К основным достоинствам данного типа поражения стоит отнести следующее.


Рекомендуем почитать
Юный техник, 2014 №  01

Популярный детский и юношеский журнал.


Юный техник, 2013 № 12

Популярный детский и юношеский журнал.


Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


В поисках марсианских сокровищ и приключений

«Новый Марс» — это проект жизни на Марсе через 200 лет. Вторая книга, которая окажется на Марсе. Первая — «Будущее освоение Марса, или Заповедник „Земля“». «Новый Марс» включает в себя 2 части: «Марсианская практика в лето 2210» и «В поисках марсианских сокровищ и приключений». Перед вами продолжение художественной повести с далеко ведущей целью: превращение планеты Земля в ядро глобального галактического Заповедника!


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.