Противодействие беспилотным летательным аппаратам - [61]

Шрифт
Интервал

10>-36
Стекло с ниодимом1,0615010>-36
Полупроводник0,8410>-4
Газовая He+Ne1,152∙10>-2Непрерывный режим10

Сформированное лазером ЭМИ обладает высокой степенью пространственно-временной когерентности. Временная когерентность поля достигает значения τ>ког ≈ 0,1 с, благодаря чему удается получить сигнал с узким спектром (f ≈ 10 Гц)[399].

Высокая степень пространственной когерентности позволяет с помощью простых оптических устройств концентрировать энергию лазера в весьма узком телесном угле. Эта способность лазера позволяет при сравнительно небольшой энергии излучения на выходе оптической системы даже на больших расстояниях до подавляемого РЭС формировать ЭМИ с плотностью энергии, которой достаточно для достижения эффекта функционального поражения на значительных расстояниях (около 10 км). Однако вследствие весьма малого сечения лазерного луча (0,2–0,8 м²) на расстоянии от 20 км и выше возникает проблема точного наведения луча на цель[400].

Можно выделить следующие механизмы функционального поражения объектов лазерным оружием[401].

1. Непосредственное поражение электронных приборов путем прямого воздействия мощного узконаправленного лазерного ЭМИ.

2. Выведение из строя объекта за счет вторичного индуцированного излучения плазмы, порождаемой взаимодействием сильного электромагнитного поля и твердого вещества (например, материала корпуса цели). В частности, при облучении управляемых ракет лазерным излучением с плотностью мощности порядка 10 Вт/см² вблизи поверхности обтекателя возникает мощное плазменное образование, являющееся источником некогерентного оптического излучения[402]. В этом случае возможно обратимое (временное) поражение РЭС, которое через некоторое время восстанавливает свои функции.

3. Деструктивное воздействие на поверхностный слой материала цели, в результате лазерное излучение может разрушить тонкостенные оболочки тепловым или ударным воздействием. В этом случае поражающее действие лазерного оружия определяется в основном термомеханическим и ударно-импульсным воздействием лазерного луча на цель и достигается за счет нагревания до высоких температур материалов объекта. Это вызывает расплавление или даже испарение материалов. Действие лазерного излучения отличается внезапностью, скрытностью, отсутствием внешних признаков в виде огня, дыма, звука, высокой точностью, прямолинейностью распространения и практически мгновенным действием[403].

Среди общих преимуществ лазерного оружия военные специалисты отмечают огромную концентрацию энергии на единице площади, практически мгновенное поражение объекта на недостижимых для других видов оружия дальностях, высокую избирательность поражения. При этом лазерные боевые комплексы могут быть наземного, морского, воздушного базирования[404].

Более подробная общетеоретическая информация о методах и способах функционального поражения лазерным излучением представлена в работах[405].

6.2. Анализ средств поражения БПЛА лазерным излучением

В США с 1996 г. дочерней фирмой «Boeing» — Boeing Defense and Space Group велись разработки лазерного оружия большой мощности. В частности, разрабатывался химический лазер COIL (Chemical Oxygen Iodine Laser) авиационного базирования, общей мощностью 6 МВт, способный поражать баллистические ракеты на дальности 400–460 км. Однако комплекс специфичных проблем, связанных с созданием генераторов мощного лазерного излучения, таких как расфокусировка луча вследствие изменения оптико-физических свойств линз под влиянием лазерного излучения, необходимость отвода большого количества тепла, не позволил успешно завершить данный проект.

В 2009 г. компания Northrop Grumman Corporation сумела создать мощный и надежный боевой твердотельный лазер. Ей удалось первой в мире достичь на лазере подобной конструкции мощности луча в 105,5 кВт. Работы ведутся в рамках военной программы JHPSSL (Joint High Power Solid-State Laser — «Модульный высокомощный твердотельный лазер»). В 2010 г. удалось добиться непрерывной работы твердотельного лазера на этой мощности в течение 6 ч. Это произошло во время тестовых испытаний в процессе интеграции системы наведения и слежения перед полевыми испытаниями. По габаритам установка-демонстратор JHPSSL сопоставима с автобусом и состоит из 7 лазерных усилителей мощностью каждого порядка 15 кВт, что в сумме дает 105,5 кВт. В одном из пресс-релизов Northrop Grumman Corporation за 2009 г. сообщалось, что было проведено успешное испытание системы из 8 лазерных усилителей общей мощностью 120 кВт.

В 2011 г. прошли испытания «Морского лазера-демонстратора» MLD (Maritime Laser Demonstrator), созданного Northrop Grumman Corporation (рис. 6.1). В испытаниях участвовал твердотельный лазер, разрабатываемый в рамках военной программы JHPSSL и состоящий из нескольких модулей мощностью по 15 кВт, который был установлен на борту выведенного из боевого состава эсминца типа Spruance Paul Foster. В пресс-релизе по итогам тестирования сообщалось, что впервые боевая лазерная система для корабля была интегрирована с его радиолокационной системой обнаружения и его навигационной системой, а также впервые лазерное оружие производило «выстрелы» в море с движущейся платформы.


Рекомендуем почитать
Юный техник, 2014 №  01

Популярный детский и юношеский журнал.


Юный техник, 2013 № 12

Популярный детский и юношеский журнал.


Юный техник, 2013 № 11

Популярный детский и юношеский журнал.


В поисках марсианских сокровищ и приключений

«Новый Марс» — это проект жизни на Марсе через 200 лет. Вторая книга, которая окажется на Марсе. Первая — «Будущее освоение Марса, или Заповедник „Земля“». «Новый Марс» включает в себя 2 части: «Марсианская практика в лето 2210» и «В поисках марсианских сокровищ и приключений». Перед вами продолжение художественной повести с далеко ведущей целью: превращение планеты Земля в ядро глобального галактического Заповедника!


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Юный техник, 2001 № 08

Популярный детский и юношеский журнал.